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CHAPTER 1. INTRODUCTION AND SUMMARY

1.1 Introduction

A formal quality control program was introduced in the early 1960's by

the Sodal Security Administration (SSA) to provide guidance in assessing sources of

error in the administration of the Aid to Families with Dependent Children (AFDC)

program in the various states. The Quality Control (QC) program required each

state to institute a review of a sample of cases receiving benefits from AFDC, to

carefully reinvestigate these cases and to evaluate the eligibility and amount of the

payment made for each sample case, and to provide other information. The

principal purpose of the QC review was to identify sources of error, to measure the

magnitude of errors to the extent feasible, and to provide information that could

guide in taking corrective action. The corrective action could be in the form of

improving the administration of the system or of modifying legislation or

regulations that were sources of problems.

The state QC sample has been drawn and administered by each state

within the framework of the Federal regulations that prescribe and guide the QC

program. The program is complicated by the fact that each state has different

eligibility requirements and allowances, and the QC administration in a state needs

to reflect these differences. Sample sizes in the larger states have been about 1200

cases to be reviewed in each successive six-month period, with smaller samples in
the states with small caseloads, l

A Federal subsample was drawn from the QC sample in each state to

guide and facilitate the administration of QC. The eligibility and the AFDC

allowance for the subsampled cases were again intensively reviewed and evaluated.

This review provided a framework for improving the quality and comparability of

1Optional smaller state sample sizes were recently authorized when QC was placed on an annual basis
provided the state signed a statement waiving its right to challenge the validity of the error rate
based on the reduced sample size.
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administration of the quality control programs although still taking account of the

differences in state systems.

Steps were taken in 1973 toward instituting a program of disallowances

for states that did not meet a prescribed tolerance, by withholding the Federal share

of AFDC payments that were made in error above the allowed tolerance level. This

tolerance, which had been administratively established by the Department of Health

and Human Services, was subsequently set aside by the Federal District Court as

lacking an empirical basis. In 1980, the Congress established decreasing tolerances to

be attained in fiscal years 1981 and 1982, with a tolerance of 4 percent in the

overpayment error rate in 1983. The 4 percent tolerance was reiterated in the Tax

Equity and Fiscal Responsibility Act (TEFRA) of 1982, which established a 3 percent

tolerance for fiscal year
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obtained by at least doubling the size of the Federal subsample and basing the

estimate only on the Federal findings. However, if the Federal sample cases were

not reviewed by the state in advance of the Federal review, the quality of the Federal

review would be adversely affected, and its cost considerably increased, since in the

present procedure the Federal reviewer has an easier job (and presumably does a

better job) because s/he has the advantage of the previous state review. Thus, to

maintain the same quality without the use of the double sampling estimator, not

only would the Federal sample have to be increased by a factor of two to three, but

the sample would also need to be reviewed by the state. For example, if the state

sample size is now 1200 and the Federal sample 360 (giving a total of 1560 reviews),

doubling the sample would mean state and Federal samples of 720 (giving a total of

1440 reviews). This would reduce the cost of the QC reviews by only 8 percent

(assuming about equal costs for the state and the Federal review). If the Federal

sample size had to be somewhat more than doubled to get the same precision, as is

likely, the cost would actually be increased. Even more important is the fact that

reducing the size of the state sample in this manner would greatly reduce the

effectiveness of the QC program in its primary goal, that of identifying causes of

error and guiding appropriate corrective actions.

It should be noted that the double sampling and regression estimation

procedure does not "adjust" the state estimates - instead, it provides estimates of

what would result if the Federal QC review, preceded by a state review, were applied

to the entire caseload. It is simply a procedure for reducing the sampling error of the

estimate from the Federal subsample. It makes use of the fact that the Federal and

state findings on individual cases are highly correlated. Consequently, if the

overpayment errors based on state findings for the cases in the Federal subsample

are above those in the full state sample, then the Federal findings based on that

sample are likely also to be too high. The regression estimator adjusts for the

difference in average state findings in the two samples. A similar sampling error

adjustment results if the state findings in the Federal sample are below the state

findings in the full state sample. Thus, by use of the regression estimator, the

effective sample size of the Federal subsample is increased substantially since there

is a high correlation of case-by-case findings from the state and the Federal reviews.

The estimate based on the Federal review in a state may or may not agree with the

state estimate, depending on the amount of agreement between individual Federal

1-3
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and state case findings. Thus, the results from the regression estimator are estimates

of what would be obtained if the state QC review, followed by the Federal review,

were applied each month to all cases receiving AFDC. Of course, such a procedure

would be prohibitively costly.

As currently used in AFDC, the regression estimator of the overpay-

ment error rate (referred to also as the payment error rate) for any given state is

+b(y -
ii - -- = (1)

where

n t

_' = _ xi/n' is the average overpayment error per case in the Federal
subsample as determined by the Federal review (it is the average
over all cases whether or not there was an overpayment error
involved);

n

_, = Y_yi/n is the average overpayment error in the state QC sample as
determined by the state review;

11'

_,' = _ yi/n' is the average overpayment error as determined by the state QC
review for the cases induded in the Federal subsample;

n

= _ ti/n is the average AFDC payment for the cases in the state QC
sample;

Il'

E x0,1-Il'_'5,'

b= n' (2)
E (y__],,)2

is the regression coefficient estimated from the Federal
subsample;

n is the size of the state QC sample;

n' is the size of the Federal subsample;

1-4
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xi, Yi, and ti are, respectively, for the i-th case in the designated state or
Federal sample, the amount of overpayment as determined in
the Federal review, the amount of overpayment as determined
in the state QC review, and the AFDC payment for the case;

= )1/2

is the estimated standard error of _;

Sy

r = b_xX is the coefficient of correlation of x i and Yi, estimated from the
Federal subsample;

--- fi' . . } 1/2

is the unit standard deviation of the payment errors as
determined in the Federal review and as estimated from the

Federal subsample;

n v

{Z(y .f,)'/(.,. O}
is the unit standard deviation estimated from the Federal

subsample of payment errors as determined in the state review.

The above and other formulas used (except as otherwise specified)

assume simple random sampling of the state QC sample from the file of AFDC

payment records, and of the Federal subsample from the state QC sample. In

practice, in most states the samples are drawn by proportionate stratified systematic

sampling procedures rather than simple random sampling. The stratification is by

months, with the same fraction of cases sampled each month, The systematic

selection within months ordinarily involves taking every k-th case from an ordered

list with a random start and with the ordering likely to involve geographic or

alphabetic sequencing, or both. Simple random sampling formulas are commonly

1-5
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applied in such situations, and in this app!ication they should give quite good

approximations. 3 In a few states, other modes of stratification are sometimes used.

In the original memoranda recommending the use of the regression

estimator to estimate the overpayment error rate and its standard error, T was used

in the denominator instead of t, where T is the average payment per case for the

total AFDC caseload for the period. It turned out that T was not reasonably available

in practice, and t has been substituted. As indicated later in Appendix I, this

substitution has been quite satisfactory.

A question that has concerned us about these estimators is that the

regression estimator and its estimated standard error are based on approximations

that hold for large enough samples, but that may not be reasonably acceptable for

samples of the sizes used for the Federal subsample in some or all of the states. The

size of the Federal subsample for a six-month period has varied generally between

about 70 and 200 cases for the various states, and thus between about 140 and

400 cases for a full year. Ordinarily, samples of these sizes would not be considered

too small if the samples were drawn from populations that are not extremely

skewed. However, the populations in this case are extremely skewed, with no

payment errors found in about 80 to 90 percent of the cases, and with considerably

varying and highly skewed payment errors occurring in the remaining 10 to

20 percent of the cases.

Because of this concern, in a later memorandum 4 concerning the QC

program in Supplemental Security Income (SSI), we recommended, on the basis of a

preliminary evaluation, the substitution of a difference estimator for the regression

estimator. The difference estimator is of the same form as the regression estimator

except that a constant, k, is substituted for b (b is estimated from the sample and is

3We have compLmd such stm_ sampling with simple random _unpling for the Food Stamp QC
program, which is similm-to the AFDC-QC progrmn, and found r_'mrkably dose agreement of results
for the two procedures (i.e., simple random sampling and stratified proportionate sampling by
months).

4Memorandum dated September 30, 1981, submitted by Westat to Social Security Administration,
Office of Payment Eligibility and Quality.
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subject to sampling variability). The regression estimator is evaluated in Section 2.2,

where it is shown to provide unbiased or at most trivially biased estimates. The

difference estimator is evaluated for AFDC-QC in Appendix B, and compared with

the regression estimator. This evaluation shows little difference between the two

estimators and leads us to conclude that we see no advantages to AFDC in changing
to the difference estimator.

Some of the states have argued that if disallowances are to be imposed

they should not be computed on the basis of the point estimate, as now prescribed.

They suggest that since the overpayment error rates are based on samples, a lower

confidence bound should be used, e.g., a bound computed for the sample such that

there is a low probability that the lower bound of the confidence interval computed

for each of the possible samples is less than the true error rate, and a high probability

that it is greater.

Such an approach would, on the average, systematically and

substantially underestimate the amount which would be disallowed if the true error

rate were known. The state's gains would be the Federal government's loss.

Moreover, the amount of the disallowances would depend importantly on the

sample size (the disallowance for a state would be less for a given error rate, on the

average, if a smaller QC sample size were used). Also, a problem arises because a

state could lower the confidence bound by inadvertently or deliberately doing lower-

quality work in the state QC, thus increasing the sampling error of the regression

estimate of the payment error rate. This is because a reduction in the quality of the

state QC results would increase the number of discrepancies between the state and

Federal evaluations. These increased discrepancies would decrease the correlation

between the state and the Federal findings, and thus (as can be seen from

Equation (3) above) would increase sl_, the es_mated standard error of the regression

estimator. Since, for example, a 95 percent nominal lower confidence bound is

computed by subtracting 1.64,5s1_from the estimated error rate, the result would be a

lower average value for the computed lower confidence bound and, hence, a

smaller disallowance. Consequently, there might be an incentive for a state to lower

the quality of work, in order to avoid or reduce disallowances.

1-7



Cha?ter I. Introduction and 5ummar_

We note (as discussed in Section, 3.3 and in Appendix D) that a minor

change in the standard procedure for computing lower confidence bounds would

substantially eliminate this problem. This procedure involves assigning a

minimum value for the correlation of Federal and state findings (a minimum rho)

in estimating the variance.

While more research is desirable, we have made enough progress that

some guidance is provided in this report on the first two of the following important

questions that you have asked us to examine. These questions include the

following:

· Are the sampling procedures and the regression methodology
used by the AFDC-QC statistically valid?

· What are the considerations and constraints involved in the

choice of a lower confidence bound versus a point estimate in
determining disallowances?

· What are the considerations and constraints in the choice of

sample size for the state quality control samples and for the
Federal review samples?

· Are there any means of decreasing the sampling errors (and
reducing the width of confidence intervals) of estimated state
error rates other than by increasing sample size?

In the following sections of this report, we provide some answers to

the first two of these questions in as nontechnical language as feasible, on the basis

of the work that has been completed. Fuller technical analyses and more detailed

considerations of some of the issues and the implications of alternatives are

included in the relevant appendices. Some very limited preliminary attention is

given in this report to the last two questions. They will be more fully considered in

a second report.

Before proceeding to the more detailed discussion, we provide a

summary of the principal conclusions from the work that has been done.

1-8
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1.2 Some Summary Results and Condusions

On the basis of the evaluation work that has been completed, we are
able to summarize the results and conclusions as follows:

(1) The procedures specified for drawing the state samples and the

Federal subsamples are applications of standard and widely used sampling methods,

and if the samples are made large enough, they will yield estimates of overpayment

error rates as close as desired to the value being estimated. The value being

estimated is defined as the expected value that would be obtained if the entire

caseload were reviewed by both state and Federal reviewers (as is done for the

Federal subsample).

(2) The regression methodology for making estimates from the

samples provides statistically valid estimates, unbiased in the sense that, on the

average over all possible samples that could be drawn by the specified procedures for

a state, the regression estimate of the overpayment error rate is equal or very nearly

equal to the value being estimated. This statement holds for each of the differing

sample sizes in use in the various states. Moreover, as sample size increases, the

sampling errors of the regression estimates decrease, and consequently the estimates

are closer, on the average, to the value being esffmated.

(3) The sample estimates of the variance of the estimates of

overpayment error rates are also, on the average, reasonably dose to the variance

over all possible samples, and the computed sampling errors or confidence intervals

provide, on the average, acceptable measures of precision. However, the sampling

errors of the direct state variance estimates are so large that the use of the estimated

variance from a single state sample for purposes of estimating needed sample sizes

to achieve specified levels of precision, or to provide general measures of precision,

can yield exceedingly variable and misleading results. In Section 2.5 a pooled

variance estimation procedure is developed and presented that greatly improves the
variance estimates for such uses.

(4) Classical regression analysis requires the assumption of a linear

relationship between the dependent and the independent variables, and normal
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distributions of the dependent variable for given values of the independent

variable(s). The use of the regression estimator in estimating AFDC overpayment

errors has been widely challenged on the grounds that the assumptions of classical

regression are grossly violated. However, these challenges do not recognize the

difference between classical regression analysis and the application of the regression

estimator in sample surveys, as in AFDC-QC. For such applications, the

assumptions are not required. Mathematical proof of the validity of the application

of the regression estimator in sample surveys with sufficiently large samples,

independent of the distribution from which the samples are drawn, is given by

Cochran in a classical paper on regression estimation in sample surveys, s In

addition to that proof, we provide a number of examples involving different AFDC-

QC populations and sample sizes illustrating the fact that the application of the

regression estimator in AFDC for sample sizes similar to the sample sizes in use

does yield valid results, as described in points (1) through (3) above (see Section 2.2

and Appendix B). These illustrative results are provided for each of four sample

sizes for each of three illustrative test populations based on actual AFDC data.

(5) We also note that in the application of the regression estimator

to AFDC, the regressions involved are of sample means rather than of the original

observations and the relationships between the sample means are indeed closely

linear. Also, while the conditional distributions of the dependent variable for any

given value of the independent variable are slightly skewed, they are reasonably

close to normal (see Section 2.2). Consequently, although meeting the classical

assumptions is not necessary, they are in fact reasonably met in the application of

the regression estimator in AFDC Quality Control.

(6) The distributions of individual case overpayment errors are

highly skewed. Consequently, the nominal 95 percent confidence intervals which

are now computed from the samples on the assumption of normal distributions are

imperfect. If the distributions of overpayment errors were normal, then, on the

average in repeated samples, for the sample sizes in use, close to 2-1/2 percent of the

time the value being estimated would be below the computed 95 percent confidence

5Cochran, W.G., Sampling Theory When the Sampling Units are of Unequal Size,
Americaq Statistical Assodation. Vol. 37, pp. 199-212,1942.
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interval and close to 2-1/2 percent of the time it would be above. In fact, the "tails"

above and below the confidence intervals of the overpayment error rate estimates

depart considerably from these expectations. For considerably less than 2-1/2 percent

of the samples the lower confidence bound is above the value being estimated, and

for considerably more than 2-1/2 percent of the samples the upper confidence bound

is below the value being estimated. The combined effect is that confidence intervals

cover the values being estimated with somewhat less than the nominal 95 percent

probability. Thus, the precision actually achieved is somewhat less than would be

the case if the 95 percent confidence were actually achieved. Nevertheless, the

95 percent (or 90 percent) confidence intervals provide reasonably satisfactory

indicators of precision. It is important to note that the estimates of overpayment

error rates are unaffected by any imperfections in the computed confidence
intervals.

(7) We have developed and have done some testing of an

improved method for computing confidence intervals that will yield considerably

closer approximations to the nominal probabilities. The results appear in

Section 2.4 and in Appendix C.

(8) The decision on whether to use point estimates or lower

confidence bounds in determining disallowances is a policy one, and depends on the

goals to be served. There are precedents for both approaches, as discussed in (12)

through (13) below.

(9) If the goal is to approximate the true disallowance, i.e., the

disallowance that would be made if the true overpayment error rate were known,

the point estimate satisfies the goal. Business organizations use sampling with

point estimates to settle the sharing of large costs or benefits, as in the distribution of

funds from jointly furnished services (for example, the distribution of funds by the

railroads from shipments that go over two or more lines), or as in the sharing of

joint costs (for example, joint maintenance costs of poles used to carry both

telephone and electric cables). Similarly, sample surveys with point estimates are

widely used in establishing rate bases for utilities (for example, to estimate

replacement cost of plant and equipment from inspections of samples of such

equipment) and in many other applications. Such applications of samples and the
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point estimate generally call for samples large enough to yield reasonably precise
estimates.

(10) Computation of annual disallowances from QC samples are

commonly subject to relatively large sampling errors, especially if payment error

rates are less than about 4 percentage points above tolerance. Sampling errors of

disallowances can be as much as 50 to 100 percent or more of a single year's

disallowance. This problem could be substantially eliminated by making some

modifications in the way disallowances are administered, so as to take fuller

advantage of compensations over time (see Section 3.7).

(11) If the goal is to assess disallowances separately for each year and

then only to the extent that they have been reasonably proved to be at least a

specified amount or more, then a lower confidence bound satisfies the goal. It is

common in auditing, for example, to follow up leads of evidence of possible fraud

from sample audits only ff a lower confidence bound of an estimate is exceeded, e

(12) Use of the lower confidence bound would, on the average, result

in AFDC disallowances that are much less than they would be if the true

overpayment error rates were known and used in computing disallowances. The

Federal government would absorb the loss, and this loss would be substantial.

Consequently, if lower confidence bounds were to be adopted for computing

disallowances, cost-benefit considerations indicate that, for states in which large

disallowances are involved, it would be advantageous to the Federal government to

use considerably larger samples than those now used (see Sections 3.4 and 3.5).

Increases in state samples may also be called for.

(13) The determination of appropriate sample sizes for QC for

purposes of evaluating and guiding improvements in the AFDC program involves

difficult issues, and there are no simple answers. Some limited preliminary

discussion of these issues appears in Chapter 3.

6See, for example, Arkin, Herbert, Sampling Methoda for Auditors, McGraw-Hill Book Company, New
York, pp. 56-58, 107-109.
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(14) We see no obvious striking gains to be achieved by

modifications in the design of the QC samples other than by increasing the state or

Federal sample sizes. However, some gains may be feasible. Our explorations to

date in this area are quite limited, and further work is needed in order to evaluate

any such potential gains.

(15) We add a final remark on a topic that we believe should be

mentioned here. It has sometimes been suggested that the primary role of the QC

samples should be to determine disallowances, and that corrective action inferences

could better be guided by other special analyses and studies. Such a separation seems

to be unnecessarily costly and undesirable. We anticipate that it may be possible to

increase the effectiveness of the QC sample by subjecting the data to discriminant

analyses, cluster analyses, or other methods of error-prone profiling, and thereby

identify subclasses that contribute a high proportion of errors. Such studies could
lead to the introduction of more effective stratification and more efficient allocation

of the samples. The next phase of our study will indude examining such methods

for improving precision without increasing sample size. Thus, if error-prone

profiling proves to be effective, it could also help provide the much-needed

improvements in precision of the QC sample when used for assessing

disallowances. At the same time, it would also increase its effectiveness for analyses

of sources of error and feedback for corrective action, and may also prove to be an

effective tool for improving case reviews in administration. To separate the two

uses would only add to cost and decrease performance.

We note also that other sources of data such as income tax matching,

wage matching, or bank matching have been suggested as an alternative to quality

control reviews. Such data can be very useful, to the extent that their use is cost

effective, in improving the administration of AFDC. Evaluation and possible

extension of such uses are part of the current program of the Office of Family

Assistance (OFA). These procedures do not replace the need for QC, but to the extent

that they lower error rates, they may reduce the need for corrective action and may
also reduce disallowances. After sufficient reduction in error rates has been

accomplished in a state, then a reduction in the size of the QC sample would be

appropriate in that state - but the sample must still be large enough to monitor for

early detection of a serious deterioration of quality.
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We first address the question:

· Are the sampling procedures and the regression
methodology used by the AFDC-QC statistically valid?

We have examined the spedfied sample selection and estimation

procedures, and have reviewed existing theory and in some cases extended the

theory. The available theory is not exact but holds for large enough samples.

However, available statistical theory does not tell us what size samples are large

enough; that is, what size samples are needed to achieve sufficiently close

approximations. Consequently, we have done extensive simulations by drawing

large numbers of independent samples from three test populations and prepared

estimates from them for alternative sample sizes for each of the populations. The

test populations, described in Appendix A, are samples of actual AFDC-QC cases.

Many of our condusions are based on the results of these simulations.

In the balance of this report, we discuss more fully and illustrate the

basis for most of the summary remarks that appear at the end of Chapter 1, and

provide some extensions of them.

2.1 Test Populations

To examine the accuracy of the approximations, we have done

extensive testing with three test populations (referred to as Populations A, B, and C)

using actual AFIX3-QC data from the Federal subsamples for the year ending

September 30, 1982.

Population A was created by taking the state and Federal QC results for

the cases included in the Federal subsample for Illinois, New Jersey, Ohio, and

Pennsylvania. These were four large states that had roughly similar average

payments for AFDC and roughly similar average overpayment error rates.
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Population B used the state and Federal QC results for cases included in

the Federal sample for Texas, South Carolina, Maryland, and Michigan. These are

relatively large states with somewhat different characteristics from those of

Population A.

Population C used the state and Federal QC results for cases included in

the Federal subsample for six states with relatively smaller AFDC-QC sample sizes,

including Arkansas, Colorado, Hawaii, Nebraska, Oregon, and West Virginia.

Some of the characteristics of the three test populations and of the

AFDC results for all states for the six-month period ending September 1982 are

summarized in Table 2-1 and more fully in Appendix A.

Various tests were carried through by drawing 1000 independent

samples of each of a number of specified sample sizes from these test populations,

and computing and evaluating various estimates from these samples. Among the

sample sizes used in evaluating the regression methodology were the following:

Annual sample size

1 2 3 4

Size of state sample, n 2400 1200 880 350

Size of Federal subsample, n' 360 360 260 160

Each of the state samples was obtained by drawing with replacement

from the population a simple random sample of the specified size, and then

drawing a simple random sample without replacement from the state sample for

the Federal subsample. Drawing the state sample with replacement has the effect of

making the simulation process equivalent to drawing the sample from a much

larger population, and in effect, simulates the drawing of the state sample from a

very large state AFDC population equivalent in composition to the test population.
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Table 2-1. Some characteristics of the test populations and of the full AFDC population (1982)

Test Population Average U.S.
6 months ending

Units A B C September 1982

Average AFDC payment (T) dollars 296 210 255 302

Standard deviation of payments " 255 121 194 n/a

Overpayments
Averagebased on Federal review " 21.6 15.0 16.9 20.
Average based on state QC review " 17.2 16.7 13.7 n/a

Unit standard deviation of overpayments
Federal review " 705 58.6 66.1 n/a

Correlation of Federal and state

overpayments -- 0.83 0.94 0.81 0.85*

Overpayment rate (Federal review) percent 7.30 7.95 6.62 6.64

Percent with overpayments
(Federal review) percent 12.7 13.1 11.2 15.2

n/a - Not readily available.

*Simple mean of the estimates for the 45 stats that did not mt their samples amstrat_ samples for the state
QC during this period (the mean was roughly the same for the remaining states).
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Table 2-2 shows state and Federal AFDC-QC sample sizes by state, for

the year ending September 30, 1982. Sample sizes 1 and 2 above correspond

approximately to and are illustrative of the sample sizes used in about 24 of the

larger states. Sample sizes 3 and 4 are illustrative of samples used in a number of
medium-sized and smaller states.

2.2 Evaluation of the Regression Estimator

Classical regression analysis is based on the assumption of a linear

relationship between the dependent and the independent variables, and on the

assumption that the dependent variable is approximately normally distributed for

each value of the independent variable. However, as we have noted in Section 1.2,

the fact that the joint distribution of individual state and Federal case findings of

payment errors fails to satisfy these assumptions is not relevant for the choice of an

estimator. As can be seen from Equation (1), (Section 1.1), the regression estimator

depends, not on the relationship of state and Federal findings of error for the

individual cases, but on the relationship of the sample means of those findings in

the Federal subsample. Based on 1000 independent samples from each test

population for each of four sample sizes, it is dear that the relationship between the

means is closely linear. Figure 2-1 shows scatter diagrams of the relation of the

sample mean of Federal findings and the sample mean of state findings for the same

sample, for 1000 samples drawn from Test Population A for each of four different

sample sizes, l It is dear from the diagrams that there is little ff any departure from a

linear relationship. Also, the distributions of the points about the fitted lines are

approximately although not quite normal. Thus, the assumptions of classical

regression analysis are fairly well satisfied. We emphasize again, however, that

although the classical assumptions appear to be reasonably well satisfied, meeting

them is not required in order to assure the validity of the regression estimator.

Rather, that validity requires only that the variances and covariance involved are

finite, and that the sample is suffidentiy large (see Cochran, op. cit., p. 203, and see

also Appendix B). Since the first of these conditions is obviously satisfied when

sampling from a finite population such as the AFDC case determinations, it remains

only to ask if the samples used in AFDC-QC are large enough. It is for this purpose

that we examine the results of sampling from test populations made up of real data,

using sample sizes that approximate those in actual use.

1Similar diagrams for two other test populations are induded in Appendix B.
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Table 2-2. Sample sizes by state for 12-month period ending September 30, 1982. [Samples are treated
as stratified samples in some states, with stratum figures shown in parentheses ( ).]

State Federal State Federal

sample sample sample sample
State n n' State n n'

Alabama 2,211 377 Michigan 2,396 361
Alaska 314 134 Mississippi 1,995 365

01 (225) (96) Minnesota 1,718 311
02 (89) (39) Missouri 2,580 389

Arizona 748 229 Montana 330 156
Arkansas 1,070 301 Nebraska 424 183
California 2,432 366 Nevada 329 152
Colorado 908 274 NewHampshire 295 137

06 (129) (40) New Jersey 2,358 362
07 (655) (193) New Mexico 636 208
61 (33) (8) New York 2,483 364
62 (91) (33) North Carolina 2,422 368

Connecticut 1,733 356 North Dakota 346 160
Delaware 304 167 Ohio 2,491 386
District of Columbia 938 266 Oklahoma 1,409 298
Florida 2_34 394 Oregon 1,174 285
Georgia 2,445 376 Pennsylvania 2,466 375
Hawaii 605 210 Rhode Island 625 211
Idaho 334 129 SouthCarolina 2,431 376
Illinois 2,381 358 01 (1,221) (175)

01 (339) (47) 02 (1,210) (201)
02 (1,478) (223) South Dakota 326 151
03 (564) (88) T_enru___ 2,157 359

Indiana 2,063 364 Texas 2,399 374
Iowa 1,208 304 Utah 323 172
Kansas 776 242 Vermont 301 156

Kentucky 2,137 364 Virginia 2,330 358
Louisiana 2,421 382 Washington 1,942 341
Maine 631 218 West Virginia 971 273
Maryland 2,42,5 365 Wisconsin* 2,.508 394
Massachusetts 2,401 354 01 (1,704) (266)

00 (1193) (175) 02 (804) (128)
01 (594) (92) Wyoming 339 168
O2 (614) (87)

*Figuresquoted are twice those for the last 6 months of the year.
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Figure 2-1. Mean findings of dollar error per case in 1000 independent samples for each of four
sample sizes, Population A
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Some of the results based on replicate samples drawn from
Population A are summarized in Table 2-3. Similar results were obtained for the

other test populations and are presented in Appendix B. These results indicate that

for the various sample sizes in use the regression methodology provides valid

estimates of overpayment error rates for the various sizes of annual state and

Federal samples in use. By valid estimates, we mean that for a given sample size

the average of the estimates over a large number of samples is close to the value

being estimated, and that the computed sampling errors or confidence intervals

provide approximate but acceptable indicators of precision.

Illustrations are provided by comparing lines 1 and 2 of Table 2-3 and

also by comparing the differences between these (line 3) with their estimated

standard errors (line 4). For each sample size, the average of the overpayment error

rate estimates is closely equal to the overpayment error rate in the test population.

Similar results are seen from the additional comparisons available in Table B-3 of

Appendix B. While the estimates are almost all less than the population values, the

differences are all far less than their sampling errors. All such differences contribute
A

less than one percent to the estimated mean square errors of R. We condude that

here is a trivial negative bias in the regression estimator. Any such bias decreases

faster than the sampling error decreases as sample size is increased.

Table 2-3 also illustrates that, with the regression methodology applied

to Test Population A, the estimated variances of _ (line 6) are all reasonably dose to
the estimated true variances (line 5). The differences are all small relative to their

estimated standard errors. Again, similar results are seen in Table B-3 of

Appendix B for Test Populations B and C.

2.3 Evaluation of Computed Confidence Intervals

Another way to examine the validity of the regression methodology is

to determine, for example, the proportion of times in repeated sampling that the

computed nominal 95 percent or 90 percent (two-tailed) confidence intervals

include the true payment error rate, and the proportion of times that the true

payment error rates are above or below the specified nominal confidence bounds.
Such results are shown in Table 2-4.
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Table 2-3. Evaluation of regression estimator based on computations for 1000 independent samples
drawn from Test Population A

Sample size (n and n')

I 2 3 4
2400 1200 880 350

Statistic 360 360 260 160

1. True overpayment error rate in test population .0730 .0730 .0730 .0730

2. Average of estimated overpayment error rates

from 1000 samples (R -- ]3 P,k/1000) .0731 .0724 .0727 .0729

3. Difference(Line1- Line2) -.0001 .0006 .0003 .0001

4. Estimated standard error of difference
A

(standard deviation of Rk from 1000 samples) .00025 .00027 .00033 .00048

A

5. Estimated true variance of R based on
A

variance of R from 1000 samples

- [r 4) .62s .7o4 2.29
A

6. Average of estimated variances of R from
each of 10(X)samples

av ( ) - [_ s.._k/ 100D] (x104) .645 .799 1.]00 2.19k

7. DiffeTe_nce(Line5 - Line6) -.017 -._5 -.027 .10

8. Estimated standard error of difference (Line 77' .031 .109 .053 .113

9. Standard error of estimatecl variances of

[_ <S_k - av( )2 /100011/2 (x 104) .22 .23 .39 .87

2·co.puted -

with 13assigned the vllue 3_. Falntially the same resul_ would have been obtained for J3a_igned values from 3

to 4, which seem reasonable from Figure C-1 in Appendix C. Direct estimat_ of {Jvaried between 2.8 and 3.2.
The value 3.3 was taken as an approximation before the direct es(imates were available, and was so close that it
was not worth -recomputing.
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Table 2-4. Proportion of observed samples in which value being estimated was above, below, or
covered by specified nominal confidence bounds, for Test Populations A, B, and C

Sample sizes
Test

Nominal confidence bound Population 2400/360 1200/360 880/260 350/160

Below.025point A .011 .006 .010 .013
B .011 .012 .008 .017
C .003 .011 .009 .007

Average .008 .010 .009 .012

Below .05 point A .024 .028 .028 .03I
B .032 .030 .033 .036
C .014 .021 .020 .028

Average .023 .026 .027 .032

Above .95 point A .084 .097 .100 .102
B .093 .072 .093 .096
C .093 .103 .113 .120

Average .090 .091 .102 .106

Above .975 point A .053 .059 .066 .075
B .067 .042 .055 .062
C .060 .080 .084 .087

Average .060 .060 .068 .075

Between .05 and .95 points A .892 .875 .872 .867
B .875 .898 .874 368
C .893 _76 .867 .852

Average 387 .883 .871 .862

Between _25 and .975 points A .936 .935 .924 .912
B .922 .946 .937 .921
C .937 .909 .907 .906

Average .932 .930 .923 .913

*Basedon 1000independent replicate samples for tach sample size for each test populatioa.
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The nominal 95 percent confidence intervals (and other confidence

intervals) as now computed for AFDC-QC make use of normal distribution theory,

i.e., assume that the distribu:ion of the estimated payment error rate and its esti-

mated standard error are distributed approximately as they would be for an esti-

mated mean based on simple random samples of about 30 or more observations

drawn from a normal distribution. Thus, the 95 percent confidence intervals are

computed for the overpayment error rate, _ by computing _ :t:1.96s_, where s_ is

the estimate from the sample of the standard error of _. For large enough samples

drawn from the AFDC population of overpayment errors, the probability that such a

confidence interval will cover the true value will be reasonably close to the nominal

95 percent. We refer to this as the nominal probability. If the overpayment errors

were normally distributed, then, on the average, approximately 95 percent of such

confidence intervals would include the value being estimated, and in about 2-

1/2 percent of the samples the lower bound would be below the value being esti-

mated, and in about 2-1/2 percent of the samples the upper bound would be above.

In AFDC-QC, as illustrated in Table 2-5 for Test Population A, the

distribution of overpayment errors is a very skewed rather than a normal distribu-

tion. Also, AFDC-QC uses a double sample and a regression estimator. To help

evaluate the usefulness of the computed confidence intervals under these circum-

stances, we have examined how dose the observed probabilities are to the nominal

probabilities. We have done this by taking repeated independent samples from each

of the three test populations described in Section 2.1 and more fully in Appendix A.

From Table 2-4, it is seen that for each test population and, on the

average over the three test populations, the fractions for which the true value was

below the nominal 95 percent two-tailed confidence intervals is considerably less

than the 2-1/2 percent that would be expected if the samples were drawn from

normal distributions. Conversely, R was above the computed confidence intervals

in a considerably higher fraction than the nominal 2-1/2 percent. More specifically,

on the average for the three test populations, for each sample size the value being

estimated falls below the lower nominal 95 percent confidence bound for only about

1 percent of the samples, and in about 6 to 7 percent of the cases it falls above the

upper nominal confidence bound. The differences between these percentages and

-- the 2-1/2 percent nominal percentage cannot be explained by sampling variability.
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Table 2-5. Percentage distribution of overpayment errors as determined by the state and Federal
evaluation for Test Population A (Note that in this table, as in the analyses, under-
payment errors are treated as zero overpayment errors.)

Overpayment errors ($) per Federal QC
Overpayment

errors ($)
per state QC None 1-99 100-199 200-299 300-399 400-499 500-599 Total

None 86.7 0.5 0.6 0.6 0.3 0.2 0.1 89.0

1-99 0.4 4.4 -° 0.1 ...... 5.0

100-199 0.1 -- 2.0 ........ 2.1

200-299 0.1 .... 2.2 ...... 2.2

300-399 0.1 ...... 1.5 .... 1.6

4(X)-499 .......... 0.1 -- 0.1

Total 87.3 4.9 2.6 2.9 1.8 0.3 0.1
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Table 2-4 also shows that for the largest sample size (n=2400, n'=360)

the coverage of the computed (two-tailed) 95 percent nominal confidence intervals

for the test populations falls short but conforms approximately to expectations.

More specifically, on the average for the three test populations, 93.2 percent of this

particular set of 3000 repeated samples (1000 for each test population), the 95 percent

nominal confidence intervals include the value being estimated. Such estimates

are, of course, subject to sampling errors. For the next sample size (n=1200, n'=360),

the observed average proportion of the 95 percent nominal confidence intervals that

include the value being estimated is similar but slightly lower, being about

93 percent. For the two smaller sample sizes (n--880, n'=260 and n=350, n'=160) the

proportions are about 92 percent and 91 percent, respectively. While these are

statistically significant departures from expectation for normal distributions, the

results are nevertheless close enough that the computed confidence intervals can be

interpreted as providing useful measures of the precision of estimated error rates,

with the observed probabilities being somewhat less than but reasonably dose to

expectation. They tend to be closer to the nominal probabilities for the larger sample

sizes. However, from Table 2-4 it is seen that for the lower tails (below the 2-1/2

percent and 5 percent nominal bounds), or for the upper tails (above the 95 percent

and 97-1/2 percent nominal bounds), the probabilities do not tend to be closer to the

nominal probabilities for the larger samples. We presume this is because the

subsampling ratio n'/n is lower for the larger sample sizes, and especially for the

largest sample size used in the analyses.

As seen from Figure 2-2, for the sample sizes in use, the distributions of

the estimated overpayment error rates appear to be reasonably dose to normal,

although still moderately skewed. As discussed in Appendix C, the departure from

expected proportions in each of the two tails of the confidence intervals arises

because the distributions of payment errors are considerably skewed, resulting in a

positive correlation of the estimated standard deviations with the estimated

overpayment error rates, and especially because of the wide variability in the

estimated standard deviations. As a result, the computed upper and lower nominal

95 percent confidence bounds are both somewhat low.
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Figure 2-2. Distribution of estimated payment error rate (based on 1000 samples from Population A)
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2.4 An Improved Procedure for Computing Confidence Bounds

The results summarized in Section 2.3 above are for confidence

intervals as they are now computed. We have explored several alternatives for

computing confidence intervals and describe here an alternative method that

involves the use of "Jackknife replicates. ''2 The greater the number of Jackknife

replicates used, the greater is the precision of the variance estimates, but also the

greater the computation costs. Often, in practice, a compromise choice is made and

from 30 to 60 replicates are frequently used.

One way that K Jackknife replicates can be formed, after selection of the

state and Federal samples for a state, is by first dividing the state sample into K

random subsets of equal or nearly equal size (each subset would be a stratified

random subsample if the original sample was stratified). A Jackknife replicate is

then formed by dropping one of the random subsets from the total sample and

retaining in the replicate all of the remaining cases. A total of K overlapping repli-

cate samples is formed by repeating this for each of the K subsets. The Federal find-

ings are used for the cases in a replicate that are members of the Federal subsample.

The regression estimate of the overpayment error rate is made

separately for each replicate as well as for the total sample. Then an estimate of the

variance of the overpayment error rate for the whole sample is obtained by

computing

= (Rk i
si k

^

where Rk is the estimated overpayment error rate for the k-th Jackknife replicate,

and R is the estimate for the whole sample.

2The term "Jackknife" was suggested by John Tukey, a leading statistician, who noted that the method
might be used to estimate variances of complex statistics. He noted that the use of Jackknife
replicates provides a simple amd approximate method for making variance estimates from samples
even for complex estimators such as the double sampling regression estimator. He observed that the
procedure was a simple but often effective tool, something Uke using a jackknife as a general-purpose
tool.
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Another way to form Jackknife replicates starts by defining 2K subsets

of the state sample and arranging them into K pairs. The pairs would be random

divisions of first-stage sampling units, within strata if the original sample is

stratified, or stratified samples within groups of strata of about equal aggregate size.

A Jackknife replicate then uses the data in all pairs except one. In that pair, one of

the subsets chosen randomly is doubled and the other is omitted. This gives K

replicates. Again, the regression estimate is made for each of the replicates. The

estimate of the variance is then given by

2 K )2- Zk
A

where Rk is the estimated overpayment error rate for the k-th replicate.

With either of the above approaches, confidence bounds can be
^

computed as R + t s A . With 30 or more replicates, the ordinarily used values of t are

t=1.96 for a 95 percent confidence interval and t=1.645 for a 90 percent confidence

interval. (If the samples were drawn from normal distributions, these would be

appropriate values for t.)

However, irt order to reduce the effect of skewness in the distribution

of estimated payment error rates, we describe a modification of the above procedure.

The modification is to transform the overpayment error rates for each of the K

Jackknife replicates and for the total sample by a logarithmic transformation. Such a
transformation reduces the skewness of the distribution. If we denote

z k = log 0,k

z = log0,

then,
K

2 ICl Z (Zk-ZYsz -

if the first described method of forming replicates is used, and

2-15



Cha?ter 2. Statistical Validity of AFDC-QCMethodoio_[_f

K
2

sz - Z (zk-
if the second method is used.

The lower and upper 95 percent confidence bounds for z are

z L = z - 1.96s z and z U = z + 1.96s z.

^ ^

The lower and upper confidence bounds for R are then R L = antilog z L
^

and RU = antilog z U.

We have made some tests of this procedure for computing confidence

bounds, using 400 repeated independent samples from Population A, for each of

four sample sizes used earlier, and for an additional 1500 independent replicates for

the largest sample size (n=2400, n'=360) and for an additional 2000 replicates for the

smallest sample size (n--350, n'=160). The results are summarized in Table 2-6. (See

also Appendix C.)

Table 2-6. Proportion of samples in which the true error rate is above, below, or covered by specified
nominal confidence intervals, based on logarithmic transformation of Jackknife replicate
estimates, Population A

Sample size, n/n'

All sample
2400/ 1200/ 880/ 350/ sizes
360 360 260 160 co_binecl

Number of independent replicat_ 1900 400 400 2400 5100

Proportion of samph_

Below .025 point .017 .032 .028 .023 .022

Below .05 point .035 .048 .068 .049 .045

Between .{_ and .95 points .890 .890 .867 .889 .888

Above .95 point .075 .062 .065 .062 .067

Above .975 point .045 .035 .040 .031 .035
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These proportions are considerably closer to the nominal percentages

than those observed in Table 2-4 for the confidence intervals as currently computed.

Those below the lower 2-1/2 and 5 percent lower confidence bounds, respectively,

are reasonably close although they still average somewhat less than the nominal 2-

1/2 percent and 5 percent; those above the upper bounds are moderately greater than

the nominal 2-1/2 percent and 5 percent. However, the differences, although statis-

tically significant, are small enough to be of relatively minor concern. These results

are very encouraging, although some further work is desirable, empirically based on

transformations other than the logarithmic transformation, which may reduce the

skewness further. Additional details appear in Chapter 3 and in Appendix C.

2.5 Some Further Considerations for F..stimating Sampling Error

Current practice in AFDC-QC is to estimate sampling errors (standard

errors) of estimated overpayment error rates for a state using only the sample data

for the current evaluation period for that state. This is consistent with general

practice. However, as indicated earlier, such estimates of sampling errors are subject

to large sampling errors, very much larger for a given sample size than in many

common sampling situations. As illustrations, Table 2-7 shows estimates of the

coefficients of variation of the estimated sampling errors made by current

procedures from samples of various sizes drawn from Test Populations A, B, and C.

Each coefficient of variation is estimated from 1000 samples drawn independently

for each sample size and test population.

The estimated coefficient of variation of s_ is

F 1000 2 -- u2

lO00

2 / 1000 and i indicating the i-th replicate.with s_ = _ s_i1
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2
Table 2-7. Approximate coetfidents of variation of Sl_ and s_ from 1000 samples drawn from Test

Populations A, B, and C for alternate sample sizes,* compared with samples drawn from

normal dist_'ibu tion,_

Sample sizes

n =2400 n 41200 n ,, 8_0 n --,350
n' ,, 360 n' ,, 360 n',,260 n'=160

^

cv (sfi)
Population A .18 .14 .18 .20
PopulationB .20 .16 .18 .24
Population C .27 .22 .26 .30

^ 2
CV(s_)

Population A .34 .29 .36 .40
Population B .40 .32 .37 .46
Population C .55 .46 .54 .63

For a mean of a simple random sample
of n' drawn from a normal distribution

^

CV(s_) .037 .037 .044 .056

^ 2
CV ( s _ ) .075 .075 .088 .112

X

'The 1000 samples for each sample size from each t_t population _ drawn ind_ndently (a simple random
sample of n drawn from the t_t population, and a simple random subsample of n' from the sample of n). The

coefficients of variation of s_ and s_ for a given population and sample size am computed from the same 1000
samples.
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Similarly, the estimated coefficient of variation of sA is

1/2

/
CV(s_) = [ll0(_(SRi )21000]

1000

withsA = _ sA / 1000.R · Ri1

The exceedingly skewed distributions of overpayment errors in

combination with the use of double sampling and the regression estimator result in

these very large sampling errors of estimated variances and standard errors as

compared with, for example, the sampling errors of estimates of the variance and

standard errors of means based on simple random samples of size n' drawn from a

normal distribution 3 (which are also shown in Table 2-7). The large coefficients of

variation of the estimated variances and standard errors not only result in relatively

large sampling errors for the estimated overpayment error rates, but also cause

differences between exact confidence limits (limits that would conform exactly to the

nominal probabilities) and the confidence limits as currently computed. As seen

earlier (Table 2-4), for the confidence limits as currently computed, the observed

coverage probabilities in repeated samples from the test populations differ

somewhat from the nominal 95 and 90 percent probabilities, and differ more widely

for the upper and lower tails of the confidence intervals considered separately.

3See Hansen, M., Hurwitz, W., and Madow, W., Sample $u_ey Methods and Theory, Vol. 1, (John
Wiley & Sons, New York, 1953), pp. 133-148, where theory is given, with illustrations for simple
random sampling. The theory amd illustrations given there do not cover double sampling with
regression estimation, for which the impact of skewed distributions is increased. We note, also, that
technically it is not the skewneu of a distribution but, rather, its high kurtosis which causes the very
large variance of estimated variances. The kurtosis is measured by [_-- (fourth moment about
mean)/o 4. However, in practice, highly skewed distributions tend to have high kurtosis, and the
greater the skewness, the greater the kurtosis. This is strikingly demonstrated in the illustrations in
the reference cited. Consequently, we prefer to refer to high skewness in characterizing such
distributions, which is readily seen by the eye, rather than high kurtosis, which is not.
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A particularly serious problem that results from the large coefficients of

variation of s_ is that estimates of the sample size needed to achieve a given level of

precision for a state can be subject to wide-ranging error. For example, in a state in

which the joint distribution of state and Federal determinations of overpayment

error rates corresponds approximately to Test Population C, and with a state sample

size of 350 and a Federal subsample size of 160, the coefficient of variation of the
2

estimated variance, s_, would be about 63 percent (and of s_ about 30 percent).

We examine what might result when the estimated variance for a state

is subject to such a large coeffident of variation and is used to determine the sample

size needed to achieve a given level of precision. Suppose that an estimate is made

for a state of the sample size needed to achieve an estimate of R subject to a standard

error of .015. For illustration, we assume that the distribution of overpayment

errors in the state is like that of Population C. From the known characteristics of

Population C, we compute that if we retain the ratio of sample sizes n'/n = 160/350,

a state sample size of n-420 and a Federal subsample size of n--192 would yield such

a standard error. However, if one estimated the sample size needed on the basis of
2

s_ estimated from a sample of n'=160 and n--350 (approximately the average annual

sample size in use in a number of the smaller states) and if the ratio of

n'/n = 160/350 were retained, one would have roughly 1 chance in 20 that the

estimates of the Federal and state sample sizes needed would be either as low as

n'=38 and n--83 or lower or as high as n'=508 and n=llll or higher. Such a range is

far too wide to provide a useful guide for determining needed sample sizes.

Even for states with large QC sample sizes, the range would be wide.

For example, for samples of n'=360 and n=2400 drawn from a state distribution like

that of Test Population C, if this ratio of n' to n is retained, there is about 1 chance in

20 that the estimates of needed sample sizes would be as low as n'--38 and n=255 or

lower, or as high as n'--305 and n=2036 or higher? Of course, the ratio n'/n might

2 2

4The needed sample sizes were computed as follows: n' = S R /o_, with o1_ set equal to .015, and

2 2
SR = (o x/T2)[1 - p2(1-n'/n)l,,.043 computed for Population C (see Appendix A) and assuming a fixed
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not be retained for such different sample sizes, but the effect of the wide ranging
sampling variability would remain. We note that the variance of the estimated

variance is somewhat larger for Test Population C, which we have used for

illustration, than for the other two test populations.

2.5.1 Pooled Variance Estimates

To reduce the wide sampling variability of the estimated variance of

the estimate of R, some consideration has been given by AFDC staff to the use of a

pooled estimate of variance in computing the estimated standard error. We regard

this as a useful procedure and have developed and evaluated an approach to

accomplish this.

We have explored some alternatives that are described in Appendix E.

A pooled variance estimation procedure that appears to provide acceptable variance

estimates is one in which the states are first ordered on the basis of preliminary

pooled unit variance estimates for a prior year or years. We define the preliminary

estimated unit variance for state k for this purpose as

2

 0-0}2 sst {1.r kSk ----
tk

where the symbols are as defined in Chapter 1, with the subscript k added to identify
state k.

2
ratio for n'/n = 160/350. In practice S_ is unknown and must be estimated from the sample. The

estimate of S is n's i as given by Equation (3) in Chapter 1. The observed (not the nominal

2

bounds assuming a normal distribution) 2-1/2 percent and 97-1/2 percent confidence bounds of s i in

1000 independent replicate samples of n'=160 and n--350, drawn from Population C, and also for

n=360 and n=2400 were used to obtain these results.
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For this purpose, a uniform value of f-.2 is used for each of the

51 states. A :_mple mean of such estimated unit variances for the state for two prior

years is then computed. The list of states ordered on these average preliminary unit

variances is then divided into several relatively homogeneous groups (in

Appendix E, we have used 5 groups with 10 or 11 states in each group). For the

preliminary unit variance estimates, no use is made of the variance estimates or

other sample data for the current year.

~2 f 2 tk' respectively,areThe pooled estimates Sxk, [k' and r k o Sxk, and Pk'

made for state k in a group of m states as follows (with state i different from state k):

m-1 m-1

-2 (2n_ s2
! !

m-1 m-1

I !

m-] m-]

r, --(_._,.,,.Z .',,.3/ (_._*Z.'-,)_ _,,
1 I

-2
and -2Syk is defined the same as s xk, but for the Y variable,

n_

--Yd.,(,,,,_,)_
n_

1

_,,,- Y_.('ij' i,) (y,j-_,)/ .'-i

n_
1

h = ,V_.,t_j/.1 ·
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The symbol xij denotes the Federal determination of the overpayment error for the

j-th case in the Federal subsample in state i, Yij the corresponding state

determination of overpayment error, tij the total payment to case j in state i, and n' i

the size of the Federal subsample for the year in state i.

Note that each of the above pooled estimates is a simple weighted

average of the respective state values, with weights equal to the Federal subsample

sizes, except that state k, the state for which the pooled unit estimate is being made,

is given double weight.

The pooled unit variance estimate for state k is then

-' O-fO}st -- (Sxk/tlr){1-rlt

where fk = n'k/nk is the fraction that the Federal subsample is of the state sample in

state k.

^

The pooled estimate of the variance of R k is then

-2 -2

S^ = S k / 'Rk nk '

This pooled estimate will considerably improve the unit variance

estimate for state k, provided that the true and unknown unit variance in each of

the other states in the group is not too different from S2, the true (unknown) unit

variance for state k. The improvement results because the pooled estimates are

made from a much larger sample of cases (about 8 to 14 times as large for an average

state) as is s2. Of course, the pooled estimate is, in fact, a biased estimate of S2, the

bias depending on how much the expected values of the true state variances and

correlations differ from state to state in the group. The analyses and evaluations in

Appendix E indicate that very substantial gains result from the use of such a pooled

variance estimate for purposes of providing a general measure of precision for a
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state. We show in Section 2.5.2 that the pooled variance estimate is not appropriate

for use in computing lower confidence bounds, but that the direct state variance
estimates are.

We note that this particular pooled unit variance estimator involves

very little computational burden. It simply makes use of unit variances and

covariances (or correlations) already estimated for purposes of computing direct
variance estimates for each state.

It is shown in Appendix E that the simple pooled variance estimates

evaluated there have moderately higher correlations across states with the true state

variances being estimated than do the direct variance estimates, state by state. At the

same time, they have very much smaller variances, by factors of about 6 to 14.

The simple pooled variance described here differs from the one

described and evaluated in Appendix E because the one described here obtains

weighted averages in which the weight for the specified state is doubled in

computing the various terms. From the analyses in Appendix E, we tentatively

conclude that this presumably will result in a small increase in the correlation with

the true values being estimated, and a small increase in the variance of the

composite estimate. The differences should be modest, but some evaluation of this

presumption would be desirable.

In summary, because of its much smaller variances, and its moderately

higher correlation with the true values being estimated as compared to the direct

variance estimates, we conclude that the pooled variance estimator has substantial

advantage in providing general precision measures, and in arriving at the expected

precision of specified sample sizes. However, it is less useful for computing a lower
confidence bound than the direct variance esHmate for a state.
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2.5.2 Implications for the Choice of Variance Estimators

The results just presented, indicating substantial gains from the use of

a pooled variance estimator for a state, might appear to lead to the condusion that

the pooled variance estimator would be superior for all purposes. However, this

may not be the case. While the pooled variance estimator achieves substantial gains

for most purposes, there remain applications where direct variance estimation,

state-by-state, has advantages. We summarize some relevant results in Table 2-8.

The results presented in Table 2-8 are for four different methods of

computing confidence intervals. For the "Regular" variance estimator, the

confidence bounds are obtained by computing _ + ts_ where s_ is the usual direct

estimate of the standard error of _ from the sample for the current year. For the

"Jackknife-L", the variance is computed from logarithms of Jackknife replicate
estimates, and the confidence bounds are obtained from the inverse transformation

of logarithmic confidence bounds, as discussed in Section 2.4 and in Appendix C.

For the "Known _" variance estimator, the variance is not estimated from the

sample. Instead, the confidence interval is computed as i_:l: to_, where the

parameters of Population A are used in computing a_ (where _ = S2/n ' and S2 is

given in Footnote 4 in Section 2.5). Of course, the parameters for computing a_ are

known for our test population, but would not be known in practice. The results for

the unknown true variance are presented to help evaluate the pooled variance

estimator. For the pooled variance estimator, the confidence bounds are computed

as for the "Regular," except that the pooled estimate of the variance of _ is used,

obtained by procedures discussed in Section 2.5.1, and evaluated in A_dix E.

Table 2-8 shows, in the fourth, frith, and sixth columns, the estimated

mean, standard error, and coeffident of variation (CV) of the lengths of each type of

confidence interval. The next two columns show the estimated probability that the

true population overpayment error rate is, respectively, to the left and to the right of

the computed confidence intervals. The last three columns show the estimated

mean, standard error, and coefficient of variation of the lower bounds of the

confidence intervals.

2-25



Table 2-8. Properties of alternative procedures for computing of confidence intervals for R, for Population A (see text for description)
Igl

Length Estimated _robabili_ Lower bound I '_

Standard Standard :2.
Confidence Mean error C.V. Mean error C.V. _

Sample size Variance estimator level _ _ _/_ R<l.b. R>u.b. _ _ _gb/_

2400/360 Regular 90% 0.0268 0.0053 .20 0.023 0.090 0.0596 0.00653 .11
95% 0.0319 0.0064 .20 0.009 0.068 0.0571 0.00634 .1!

Jackknife - L 90% 0.0270 0.0354 .20 0.031 0.075 0.0608 0.00660 .11 9
95% 0.0322 0.0065 .20 0.017 0.048 0.0587 0.00641 .11 _

2
Known o^ 90% 0.0267 0.0800 .00 0.055 0.039 0.0597 0.00798 .13 _.

R
95% 0.0318 0.0000 .00 0.027 0.020 0.0571 0.00798 .14

O, g-

'Pooled" 90% 0.0267 0.0822 .08 N A N A 0.0597 0.08790 .13
95% 0.0318 0.0026 .08 NA NA 0.0571 0.00780 .14

350/160 Regular 90% 0.0499 0.0105 .21 0.021 0.091 0.0480 0.01153 .24
95% 0.0595 0.0126 .21 0.006 0.065 0.0432 0.01106 .26

Jackknife - L 90% 0.0511 0.0111 .22 0.042 0.061 0.0518 0.01169 .22
95% 0.0614 0.0134 .22 0.019 0.040 0.0486 0.01021 .21

2

Known a_ 90% 0.0491 0.0800 .08 0.055 0.042 0.0484 0.01488 .31
95% 0.0584 0.0800 .08 0.028 0.018 0.0437 0.01488 .34

"Pooled" 90% 0.0491 0.0042 .09 NA NA 0.0484 0.01460 .30
95% 0.0584 0.0051 .09 NA NA 0.0437 0.01430 .29
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The first six rows for each sample size in Table 2-8 were obtained by

drawing 1000 independent samples from Test Population A. The same 1000

replicate samples were used for computing results for the Regular, Jackknife, and
2

known c_ estimators, for sample size n=2400, n'=360, and another independent set

of 1000 replicate samples was used to obtain the corresponding measures for sample
size n=350, n'=160.

In the last two rows for each sample size labeled "Pooled", we provide

approximate estimates of what would have been obtained had we been able to

simulate a pooled variance estimation procedure for a set of states similar to

Population A. These results were obtained as explained in Section 2.5.3.

We now examine the implications of the alternative variance
estimators for various uses.

For computing confidence bounds after the sample results are

available, it appears from Table 2-8, and from Appendix C (as we explain below), that

Jackknife-L (i.e., the logarithmic transformation of Jackknife replicate estimates) has

advantages over the other alternatives considered, even though the estimated

standard error of the length of the confidence interval is about two and a half times

greater for this alternative than for the "pooled" variance estimator. Also, the

standard error of the lower confidence bound is slightly larger for the Jackknife-L

than for the Regular. However, the standard error of the lower confidence bound

based on the "pooled" variance estimate is about 20 to 40 percent larger than for

lower bounds based on the Regular or Jacklcnife-L variance estimators. The low

standard error of the lower confidence bounds based on both the Regular and̂

]ackknife-L variance estimators arises because of the relatively high correlation of R

and its estimated standard error (see Appendix C for fuller discussion).

For the "pooled" estimator, the probabilities associated with the tails,

that is, beyond the ends of the confidence intervals, are not available. However, the

tails for the "known OR" confidence intervals, which
USe the population parameters

instead of sample estimates of o_, give estimates of those probabilities that are quite
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good for the tails. Consequently, because the variances of the estimated standard

error for the "pooled" are much smaller than for the "Regular," we assume the tails

for the "pooled" might be reasonably close to those for which the known o_ is used.

We conclude that, in spite of the apparent advantages of the pooled

variance estimator for most purposes, the substantially smaller standard error of the

lower bound obtained from either the regular procedure or Jackknife-L appears to be

sufficiently important as to lead to the choice of one of these procedures for

computing the lower bound. Another reason for adopting one of these procedures

in computing a lower confidence bound is that each depends only on the estimates

from the sample for the current year. One does not have to justify bringing in other

data that might be challenged as not completely relevant. The Jackknife-L is

preferable to the Regular because the frequencies in the "tails" are considerably

closer to the nominal probabilities than are those for the Regular. In summary, we

conclude that the Jackknife logarithmic procedure is preferable for computing lower

confidence bounds that are to be used for such purposes as the determination of

disallowances if they are to be based on lower confidence bounds. In Section 2.4 and

Appendix C, we show that it also yields reasonably good results for the upper

confidence bounds. The "regular" or current procedure for computing lower

confidence bounds may provide acceptable results for less rigorous uses. s

The situation is entirely different with regard to estimates of sampling

errors for other purposes. At the beginning of Section 2.5.1, we showed great

variability of the "Regular" procedure in making estimates of the sample size

needed to achieve a given level of sampling error. The range of variability in

estimating needed sample sizes will be roughly one-sixth as much or less for the

pooled variance estimator as for the direct or for the logarithmic transformation of

the Jackknife variance estimator. Similarly, advance estimates of expected sampling

errors based on results for prior years will be greatly reduced with the pooled

SYou have asked for an estimate of the added cost of computing lower confidence bounds by the
Jackknife-L procedure as compm'ed with the _nalar procedure. This cost depends on the computer

equipment available and on how the job is programmed. A very rough generous estimate based on the
computing equipment we have used for cres, ting the Jafkknife replicates and for computing the
variances and confidence limits for the test populatiom is no more than $4,000for the programming,
which is a one-time cost for all states and years, and not more than about $200 for computer time for
each state computation.
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variance estimator. These advantages are very substantial. Indeed, it appears

essential to use a pooled or composite variance estimator in advance variance

estimation and in planning needed sample sizes.

Our conclusion is that both approaches have important, but different,
uses.

2.5.3 Note on Computation of Characteristics of Confidence Intervals Using
the Pooled Variance Estimator

The results presented in Table 2-8 for the "Pooled" variance estimator

came only in part from the simulations and were estimated as follows.

The lengths of the confidence intervals for the pooled estimator, e,
2.

were assumed to be approximately equal to those for "known o_ since the mean of

the pooled estimates of the standard error of 1_ should be close to the known c_.
2 2

The o6 for the pooled estimate was assumed to be equal to one-sixth of the og for the

regular estimator. This is greater than the average value of the ratios of variance of

the pooled estimator (with assumed zero bias) to the variance of the regular

estimator observed in Appendix E. The mean of the lower bounds, gb, for the
2

pooled estimator was assumed equal to the gb for known oi_ since the intervals

would be of approximately equal average length. The estimated standard error of

the pooled lower bound, oBb, follows from the fact that the computed lower

confidence bound for the pooled estimator is gb- _- tsp. Consequently, the
variance of gb is

2 ^ ^
O_b = Var(h) + t2Var(s_) -2tPR,sl_ qVar(R)Var(s_) .

The P_,s_ is the correlation of _ and s_ and was assumed to be equal to x/T/10.
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This is a rough approximation based on the correlation of x and x+y,

where y is the sum of a variable y for a simple random sample of n from a specified

population, and x is the sum of a variable x for an independent simple random

sample of m, where m/(m+n) equals approximately 1/10. The value 1/10 is chosen

because the sample for a particular state in a group may constitute roughly one-

tenth of the sample for the entire group. Fortunately, for the approximate

relationships that should hold in this case, the agb is not sensitive to any of the

terms but the first one, so that the approximations for ag b should be reasonab' · good.

2.6 Conclusions on the Validity of the Regression Methodology

From the above analyses, supplemented by the fuller analyses

presented in later sections and in the appendices, we conclude:

· The regression methodology provides unbiased or at most
trivially biased point estimates of the overpayment error rates
for the AFDC-QC samples in use.

· The sampling errors estimated from the samples also provide
nearly unbiased estimates of the sampling errors of the
estimated overpayment error rates. However, they are subject to
large sampling errors, much too large to be useful for
determining needed sample sizes to yield specified magnitudes
of sampling errors.

· A pooled variance estimation procedure is provided that greatly
improves estimates of variances, and thus of estimates of needed
sample sizes to achieve specified precision levels.

· The confidence intervals as now being computed yield results
that, although imperfect, nevertheless provide useful guides to
the precision of the point estimates of the overpayment error
rates.

· A modified methodology is provided that will yield improved
confidence intervals, with closer agreement to the nominal
coverage probabilities, especially in the coverage of the tails.
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· The point estimates are not affected by imperfections in the
confidence intervals as now computed. They provide estimates
of the overpayment error rates that are valid within the ranges
of error indicated approximately by the computed confidence
limits.
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CHAPTER 3. CONSIDERATIONS IN CHOICE OF LOWER CONFIDENCE BOUND

VERSUS POINT ESTIMATE IN DETERMINING DISALLOWANCES

3.1 Introduction

In this chapter we examine various aspects of the second question we

were asked to consider (see Section 1.1), as follows:

· What are the considerations and constraints involved

in the choice of a lower confidence bound versus a
point estimate in determining disallowances?

Disallowances are currently computed and assessed annually for states

with estimated overpayment error rates in excess of allowed tolerances. As

explained in Chapter 1, the allowed tolerances are specified in legislation. They vary

from state to state for years prior to 1984, and are set at 3 percent for 1984 and

thereafter. The disallowance for a state is I_ = (R- Ro)A, provided R is greater than
^

RO,where R is the QC regression estimate of R (the true overpayment error rate for

the year), R0 is the corresponding tolerance or target rate (the terms "tolerance" and

"target rate" are used interchangeably), and A is the amount of the Federal payment

to the state for the year. Under certain circumstances, the disallowance can be

suspended or waived by the Secretary of Health and Human Services.

The assessment of disallowances has led to challenges and suits by

some of the states, and some have proposed that, because the estimated error rates

are subject to sampling errors, a lower confidence bound of R should be substituted
A

for R in computing the disallowance. This alternative has also been considered by

the Congress. Consequently, it is appropriate to examine and compare the statistical

implications of these and other alternatives.

There are important precedents for the use of either the point estimate

or a lower confidence bound in various applications of sampling. The choice
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should be guided by the purposes to be accomplished by the assessment of

disallowances and is primarily a policy decision, rather tha?- a statistical one, and

depends on the goals t. be served, as discussed in poin, g) through (13) in

Section 1.2. However, it has important statistical implications t_at we will examine

in this chapter. We note again, here, that in practice the point estimate is ordinarily

and appropriately used where two parties to a funds transfer or payment are

involved, and the amount of the payment is determined by a sample estimate.

Such applications of samples and the point estimate generally call for samples large

enough to yield reasonably precise estimates. Use of a lower confidence bound

would result in a disadvantage to one party to the advantage of the other. A lower

confidence bound is more likely to be appropriate if the purpose of a sample esti-

mate is to prove carelessness or fraud, such as in auditing, and the consequence may

be an assessment of a penalty. In AFDC, the Tax Equity and Fiscal Responsibility Act

(TEFRA) of 1982 has been interpreted as requiring use of the point estimate.

When samples are large enough, the difference between the two

approaches is reduced, and ultimately, for large enough samples, the difference

becomes relatively small. However, the differences are relatively large for the sizes

of annual AFDC samples in use. Since large transfers of funds are involved, an

understanding of the statistical implications of the alternatives is desirable. We

consider this in Section 3.2. We refer to the use of the point estimate in computing

annual disallowances as Rule A, and to the use of the lower confidence bound as

Rule C. Rule B is a variant of Rule A - the annual disallowance is based on the

point estimate except that the disallowance is waived if the nominal 95 percent

lower confidence bound of the error rate is below the tolerance. Rule B will, of

course, result in lower disallowances, on the average, than Rule A, because they are

waivec when the estimated error rate is above, but within likely sampling error

range, of the target.

Later (in Section 3.7), we describe still another rule, Rule D. This rule

increases the effective sample size for computing disallowances by accumulating the

annual disallowances over successive years. The lower confidence bound of the

accumulated disallowances is used for computing cash disallowances to be assessed

until the sampling error of the total accumulated disallowance is sufficiently small.
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The accumulated disallowance based on the point estimates is then used for final
settlement.

3.2 Use of Point Estimate Versus Lower Confidence Bound in Computing
Annual Disallowances

Table 3-1 illustrates the consequences of using Rules A, B, and C for

computing disallowances for alternative values of the excess of the overpayment

error rate over the tolerance (column 1), the assumed standard error of the

overpayment error rate (column 2), and the size of the Federal payment (column 4).

The correct disallowances (computed using the unknown true error rate) for each

case are shown in column 5, and the average over all possible samples of

disallowances computed with Rules A, B, and C are shown in columns 6, 7, and 8.

The coefficients of variation of the disallowances computed with Rule A are shown

in column 9. The figures in the table are approximations based on the assumptions

stated in the Notes for Table 3-1. The figures in columns 9 through 12 are of

principal interest, and apply for any level of the Federal payment to states that have

(approximately) one of the seven assumed excess of error rates over tolerance

shown in column 1 and one of the two levels of sampling error shown in column 2.

While the figures in columns 9 through 12 of Table 3-1 are

approximations, and are not those for any specific states, they are approximately

representative of the situation in fiscal year 1984 for many states. For all large states,

the sizes of the Federal QC samples are roughly the same, and the state QC samples

vary from about 1200 to 2400. The .006 standard error of i_ assumed in Table 3-1 is

roughly representative of the average sampling error in 1984 for these states

(although the sampling error tends to be somewhat smaller for states with the larger

state samples, and somewhat larger for the others). The sampling error of .012

shown in the bottom deck of Table 3-1 is roughly illustrative of a number of

medium-sized and smaller states (states with state samples of about 500 to 800).

Column 6 of Table 3-1 illustrates that on the average (over all possible

samples) disallowances computed by Rule A are closely equal to the correct
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Table 3-1. Some illustrative approximate average results over repeated samples for annual disallowances computed by Rules A, B, and C*

Average of actual disallowances Ratio of average actual ._
for RulesA,B,and C to correct disallowance

Excessof Amount Correct

overpayment of Federal Idisallowance CV of actual

error rate over Standard R-Po payment A D=-(R-ROA DA Da Dc disallowances for _.

target (R-R 0 error of R o_ ($000) ($000) ($000) ($000) ($000) Rule A (ObA/D A) 6,/13 Ds/D Dc/D
(1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12)

.08 .006 13.3 500,000 40,000 40,000 39,150 35,065 .075 1.00 .98 .a8

.05 .006 8.3 500,000 25,000 25,1300 24,450 20,065 .12 1.00 .98 .8o
.03 .006 5.0 500,000 15,000 15,000 14,700 10,065 .20 1.00 .98 .67

.02 .006 3.3 500,1)00 10,000 10,000 9,700 5,092 .30 1.00 .97 .51.01 .oo6 1.7 soo_ s,ooo s_50 am 1_ .57 1.01 .72 .22 ,_
Ii.o .oo6o.o o ,oo ,5o
Ii

i_ .08 .006 13.3 100,000 8,000 8,000 7,830 7,013 .075 1.00 .98 .88

.05 .006 8.3 100,000 5,000 5,000 4,890 4,013 .12 1.00 .98 .80

.03 .006 5.0 100,000 3,000 3,000 2,940 2,013 .20 1.00 .98 .67

.02 .006 3.3 100,000 2,000 2,000 1,940 1,018 .30 1.00 .97 .51
·01 .006 1.7 100,000 1,000 1,010 720 217 .57 1.01 .72 .22 It

·003 .006 .5 100,000 300 420 110 24 1.07 1.40 .37 .08 _-

·0 .006 0.0 100,000 0 240 30 6 1.46 _ oo oo

·08 .012 6.7 15,000 1,200 1,200 1,175 904 .15 1.00 .98 .75
·05 .012 4.2 15,000 750 750 734 454 .24 1.00 .98 .61
·03 .012 2.5 15,000 450 450 417 168 .40 1.00 .93 .37
·02 .012 1.7 15,000 300 303 214 66 .57 1.01 .71 .22

·01 .012 .8 15,000 150 164 57 16 .88 1.09 .38 ·11
·003 .012 .25 15,000 45 96 14 4 1.24 2.13 .31 .09

·0 .012 0.0 15,000 0 72 6 2 1.46 oo oo oo

*See Notes for Table 3-1 for definitions.



Notes for Table 3-1

The rules are defined as follows:

A A ^

Rule A: DA _- {R- R0)A if positive; otherwise DA = 0.

A A A A

Rule B: DB -- 01 - IIOA it R - 1.645s_ > PO;otherwise DB _- 0.

A A ^

Rule C: Dc ,- 01-1.6_ - R0)A if positive; otherwise Dc _- 0.

A

The DA is the average of DA. etc..

A

For each rule. s_ is the estimate of the standard error of R and R0 is the tarset error rate. The computations shown in the table depend upon the

foliowin 8 assump6ons for each model.

A ^

For Rule A, the computations assume that R is normally distributed and that R is an unbiased estimate of the lameerror rate R.

¥ ,,
For Rules B and C, the computations asstune that the joint distribution of R and s_ is normal and that they are both unbiased estimates. It is assumed

A

that the correlation of R ami s_ Is .7 (which is approximatelythe averagecorrelation observed in simulations for Test Populations A, B, and C (see
2

Appendix C, Table C-l), and that the variance of s_ is (_=l)ol_/4n'. We have taken {},=4,n'=360 wheno_ -- .006, and n'={60 when o_ =.012. The

1_-40 is an approximate average value obtained for Test Populations A, B, and C from the assumed relationship

2 4
o,2 .

2

and o2 = n'_ were each obtained from 1000 replicated independent samples (see Appendix C).
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disallowances unless (R-R0)/_ fl is small, say less than about 1.5. It also shows

relatively how much disallowances would be overestimated, on the average, when

(R - RO)/O_ is small. It shows, for example, that if R- R0 is .01 or greater, and if _ is

approximately .006, the computed disallowance under Rule A will, on the average,

be equal or very nearly equal to the correct amount. On the other hand, for a state

with _ = .006, and an excess of the overpayment error rate over the target of only

about .003, the average annual disallowance would be 40 percent above the correct

disallowance (column 10), and for a state with cr_ =.012, the average annual
disallowance would be more than twice the correct disallowance.

Rule B is the same as Rule A except that no disallowance is assessed

unless there is strong evidence that the true error rate is above the target. More

specifically, with Rule B, the disallowance is

-RD.. R

O, otherwise

with t = 1.645 if a nominal 5 percent point (the lower bound of the nominal

90 percent confidence interval) is to be used. Alternatively, a lower confidence

bound would be computed using the log-Jackknife-replicate procedure described in

Section 2.4, which yields a probability associated with the lower confidence bound

that is considerably doser to the nominal probability.

It is seen from Table 3-1 (column 11) that the use of Rule B avoids the

overassessment of cli-aallowances that results, on the average, from Rule A when the

overpayment error rate is dose to the tolerance. Instead, Rule B very slightly

underassesses the disallowances, on the average, when (R- R0)/_ is large and, as

expected, underassesses them considerably when the sampling error of R is large

relative to the excess of the overpayment error rate over the target.

We have also evaluated the application of Rule B by using the

simulated samples drawn from the Test Populations A, B, and C, and using the
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^

criterion (R- 1.645s_) > 0 rather than the suggested log-Jackknife-replicate transfor-

mation. The results are presented in Table 3-2. We conclude from Table 3-2 that for

the three test populations the application of Rule B, using sample estimates of R and

o_, gives quite satisfactory results, i.e., the Ds/A in each case is close to R - R0, except

for the smallest sample size. For the smallest sample size for Test Population C,

especially, the ratio of average computed to correct disallowance (last column) is

sufficiently small to result in underestimation of disallowances by about 10 percent.

The ratios in the last column of Table 3-2 are reasonably dose to and confirm the

corresponding approximate ratios in column 11 of Table 3-1, for comparable values

of (R - R0) /o_. Of course, the results presented in Table 3-2 are averages from 1000

independent replicate samples and are subject to some sampling variability.

The coefficients of variation (CV) of the I_A for the illustrative samples

are shown in column 9 of Table 3-1. It is seen that the CV increases rapidly as the

excess of the overpayment error rate over the tolerance decreases.

For Rule A, the magnitude of the sampling errors relative to the

disallowances (illustrated by the "CV of actual disallowances" shown in column 9 of

Table 3-1) has been the basis for a concern expressed by some states that the amount

of the disallowance may vary widely due to sampling error. This concern has led

some of the states to propose the adoption of Rule C for computing disallowances,

i.e., that disallowances be computed by using a lower confidence bound instead of

the point estimate. The consequences of doing this for a one-tailed 95 percent

confidence bound (i.e., a lower 90 percent two-tailed confidence bound) are
illustrated in columns 8 and 12 of Table 3-1. If such a lower confidence bound were

adopted, the disallowance for a state would rarely exmcd the correct value, and then

only by a relatively small amount. Also, as seen in Table 3-1, the average of such

disallowances would be below, and often far below, the correct disallowance.
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Table 3-2. Average annual disallowances, computed for Rule B, for specified sample sizes (based on
1000 independent samples from each test population, and assuming tolerance of R0--.03)

A

Standard error of R Disallowances*

Average Ratio of
Proportion computed Correct average
of samples disallowance disallowance computed tc

with proportion proportion correct dis-
^ allowance

Sample size o_ (R-.03)/o_ DB>0 DB/A R- .03

Test Population A
(R = .0730)

2400 360 .0071 6.1 1.000 .0431 .0430 1.00
1200 360 .0079 5.4 1.000 .0424 .0430 .99
880 260 .0093 4.6 0.999 .0426 .0430 .99
350 160 .0129 3.3 0.957 .0422 .0430 .98

Test Population B
(R = .0795)

2400 360 .0071 7.0 1.000 .0489 .0495 .99
1200 360 .0087 5.7 1.003 .0490 .0495 .99
880 260 .0103 4.8 1.000 .0487 .0495 .98
350 160 .0152 3.3 0.984 .0490 .0495 .99

Test Population C
(R = .0662)

2400 360 .0079 4.6 0.997 .0359 .0362 .99
1200 360 .0088 4.1 0.996 .0360 .0362 .99
880 260 .0103 3.5 0.976 .0352 .0362 .97
350 160 .0143 2.5 0.791 .0326 .0362 .90

*See Table 3-1 and Notes for Table 3-1 for definitions.
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In Section 3.7 we describe an alternative procedure, Rule D, for

computing and assessing disallowances that may have advantages over assessing an

annual disallowance solely on either the point estimate or a lower confidence

bound. Before doing this, however, we review some of the implications of using a

lower confidence bound rather than the point estimate in computing disallowances.

These issues include choice of a probability to associate with a lower confidence

bound, improved procedures for computing lower confidence bounds, the

comparative precision of the lower confidence bounds and the point estimate, a

procedure to avoid a concern that poor-quality work on QC in a state could work to

the disadvantage of the Federal government by lowering the lower confidence

bound, and some limited discussion of optimum sample size considerations.

3.3 Some Implications and Issues Concerning Use of the Lower Confidence
Bound

We comment here on a few points that are relevant if the lower

confidence bound is to play a role in the computation of disallowances, whether

based on Rule B or C discussed above, or on Rule D described later (Section 3.7).

3.3.1 Choice of Nominal Confidence Level

The term "nominal confidence level" refers to the desired probability

that a confidence interval indude the true value that is being estimated. The actual

probability may differ from the nominal, although, with appropriate sample design

and sufficient sample size, the actual and nominal probabilities may be reasonably

close together. For this discussion, we assume they are equivalent. The issue to be

considered is at what level the probability associated with a confidence interval, or

with an upper or lower confidence bound, is to be specified.

We assume that a 90 percent confidence interval is defined in such a

way that a 5 percent probability is associated with each tail, that is, the lower

confidence bound is such that the probability is about 5 percent that it exceeds the

value being estimated (which we refer to as the true error rate), and the upper
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confidence bound is such that the probability- is about 5 percent that it is below the

true error rate. Similarly, for a 95 percent confidence interval, the probabilities are

about 2-1/2 percent that the lower bound exceeds and are also about 2-1/2 percent

that the upper bound is below the true error rate. The higher the specified

probability for inclusion of the true value within the confidence interval, the lower

is the probability associated with each tail. However, a choice must be made of the

confidence level to be used; this is a policy decision.

We note that while practice does and should vary, depending on the

circumstances and policy judgments made, in much statistical practice 95 percent

confidence intervals are displayed and used as measures of precision. Also, the use

of a 95 percent confidence level has been the common practice in computing two-

tailed confidence intervals to provide measures of precision in AFDC. While there

is no necessary reason for adopting the same probability level for computing a lower

one-tailed confidence bound, it seems reasonable and is common practice to do so.

In a number of analyses, we have dis!_layed both 90 and 95 percent two-tailed

confidence intervals, and corresponding 95 percent (or 5 percent) and 97-1/2 percent

(or 2-1/2 percent) lower (and upper) confidence bounds. We have adopted a

95 percent lower confidence bound more generally for illustration (or a 95 percent

upper confidence bound in some instances) because it seems to represent the most

common practice and is consistent in probability level with the level in use in

AFDC for measuring precision. However, to the extent that lower confidence

bounds have a role in computing disallowances, the adoption of a confidence level

can have a substantial impact on the resulting magnitude of the disallowance, and

consequently the choice of an appropriate probability level should be a matter for

policy determination.

3.3.2 Improved Procedures for Computing Confidence Bounds

Another issue concerns the way in which the confidence interval, and

therefore its lower bound, are computed. The present procedure in AFDC in

computing a lower confidence bound, L, is

^

L = R - tsR
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using the formulas given by Equations (1) and (3) in Chapter 1, respectively, for
^

estimating R and s_, and using t = 1.96 for a 95 percent confidence interval and for a

97-1/2 (or 2-1/2) percent lower confidence bound. Alternatively, we have suggested

above, for consideration, the use of t = 1.645 for a 95 (or 5 percent) percent lower

bound. As we have shown earlier (Section 2.3), with the highly skewed distribution

of overpayment errors, the probability that the lower bound is greater than the true

error rate is much less than the nominal 2-1/2 percent. We have also shown that

the results are similar for the lower bound of a 90 percent confidence interval (i.e.,

for a 95 percent lower confidence bound). In Section 2.4, we have suggested the use

of a log-Jackknife replicate method of computing confidence intervals which, on the

basis of the analyses we have completed, provides probabilities considerably closer to

the nominal levels. As noted before, the results are encouraging, although further

work on the problem is desirable, particularly in the search for even more useful
transformations.

We also note that the computation of confidence intervals using the

log-Jackknife-replicate method involves more computing than if computed by the

simpler procedure, but with present computer speeds and costs, the difference seems

to be unimportant in relation to the potential impact on disallowances if based on a
lower confidence bound (see footnote in Section 2.5.2).

3.3.3 Comparative Precision of Lower Confidence Bound and Point Estimate

In Section 2.5.2 of this report and in Section D.1 of Appendix D we

explain why the lower confidence bound of the overpayment error rate has

considerably greater precision than the point estimate, contrary to the usual

situation. We illustrate the comparisons for three test populations. The principal

relevance to this discussion is that possible questions concerning the precision of the

lower confidence bound do not mitigate against its use in computing disallowances.
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3.3.4 Controlling Impact of Sample Size and of Poor-Quality QC Work on
Lower Confidence Bound

Another problem with the use of the lower confidence bound in

computing disallowances is that it can be lowered by decreasing the sample size or by

lowering the quality of the QC reviews done by the state. The first of these effects

can be controlled by insistence on minimum sizes for the state sample and the

Federal subsample. Some discussion of the implications of alternative sample sizes

appears in this subsection and in Appendix D, and also in Sections 3.4 and 3.5.

It is easier to control sample size than the quality of QC work. The

presence of poor quality work can reasonably be suspected by an unusually low

correlation between the state and Federal findings for the cases in the Federal

subsample. An unusually low correlation, or continued observation of a

moderately low correlation (say below .8 or .85) may call for more intensive

monitoring of the state's QC operation. The distributions of correlations due to

sampling, and the distribution of estimated correlations by states, are given in

Appendix D. A study of such distributions, along with updating of such analyses

from time to time, can provide insight into correlations that may be lower than can

be expected from sampling variability alone.

The impact of low correlations on lower confidence bounds of

overpayment error rates can be reduced substantially by adopting a "minimum

correlation variance estimator." This is accomplished whenever the estimated

correlation in the formula for the variance (See Chapter 1, Equation (3)) is below a

specified minimum value, say .8, by replacing the correlation in the formula by the

specified minimum value. This decreases the estimated sampling error in such

instances, thus increasing the computed lower bound. Such low correlations may

occur because of poor-quality QC work, or because of sampling variability.

Whichever is the cause, the adoption of the minimum correlation variance

estimator provides a reasonable adjustment without having any effect on the point
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estimate. The selection and use of such a minimum value is discussed in

Appendix D. l

3.4 Some General Considerations on Optimum Sample Size

We note first, and strongly emphasize, that, except for a few

introductory remarks, this discussion of optimum QC sample size assumes that the

only role of the QC sample is that of computing disallowances, whereas the

principal reason for initiating the QC sample and a principal reason for its

continued use is to provide information on the frequency and magnitude of errors

and their sources, in order to guide improvement and control of the administration

of AFDC. Effectively serving these purposes is an exceedingly important role of

AFDC-QC. It is obvious that the payoff through reductions in misspent funds can be

very great indeed if overpayment error rates are substantially reduced through such

efforts. We note, for example, that the reductions in error rates in recent years (e.g.,

1980 through 1984) have been substantial, involving reductions of many millions of

dollars in improper overpayment of AFDC benefits.

Presumably, an important part of these reductions has resulted directly

and indirectly from QC efforts in the states. Nevertheless, the optimum sample

sizes needed for guiding improvements in the design and administration of AFDC

are not easily determined. We do not here attempt to make that determination in

an objective way, but we do emphasize that the sample, for this purpose, should be

large enough to facilitate reasonably precise analyses by population subgroups.

These should indude important subclasses of recipients, so that the sample would

provide separate estimates for those working and not working, those with or

without other income sources, and other subgroups, and also for major geographic

subdivisions. The latter may help in comparing administrative effectiveness within

different operating units within the state units. These types of analyses are

1From Appendix D, Table D-2, it is seen that the observed correlations for states have been increasing.
The 30th percentile of the estimates of correlations by states increased from .76 in 1981 to .87 in 1984.
From these it seems that, until additional evidence is available, the choice of a minimum r of .80 to
.85would be quite reasonable. Presumably, the lower values of the estimated correlations by states in
the table reflect to a considerable degree the consequences of sampling variability (seeFiguresD-2A,
B, and C).
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important and necessary, but it is not easy to specifv the sample size needed for such

analyses. These analyses are to be done primarily _th the state samples which are,

of course, considerably larger than the Federal subsamples. For analyses by various

subclasses, it may be useful to accumulate samples over two or three years, and also

to plot control charts for subclasses based on quarterly or more frequent QC results.

The role of the Federal subsamples in this regard is simply to monitor the state QC

efforts so that the state samples will be reasonably effective in identifying sources of

errors by type.

One of the important considerations concerning the sample sizes that

are needed to provide information for corrective action (and also for computing

disallowances) is that when a cate welfare system is "under control," that is, it has

reduced its overpayment error rate in total and in the major jurisdictions or

subdasses to an acceptably low level, perhaps to or below the current three percent

tolerance, there may be little to gain from additional efforts at corrective action (and

nothing to gain from disallowances). Consequently, it seems reasonable for such a

state to reduce the QC program to a monitoring role, primarily to provide assurance

that the overpayment error rate does not rise substantially again. This could be

done with relatively small sizes of state and Federal samples (for example, perhaps

300 to 600 for the state sample and 150 for the Federal subsample).

We mention one other consideration with regard to sample size: any

effort to optimize sample size through a cost-benefit approach must take account of

the total expenditures involved. The exception is the case mentioned in the

preceding paragraph, where the administration of AFDC is demonstrably under

good control.

From a cost-benefit point of view, it may be worth using only a

relatively small QC sample in the smaller states. Cost-benefit considerations call for

higher precision and greater detail for large states. Large samples can provide

analyses at shorter time intervals, or by major administrative areas, or for

population subgroups, and may greatly facilitate identifying problems and taking

corrective action. In New York, for example, in fiscal year 1984 the cost of AFDC was

$957 million, while in Wyoming it was about $6 million, or about 6/10 of one

percent of the New York cost. Delaying or failing to take effective corrective action
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in Wyoming could not noticeably impact to_al erroneous expenditures in the AFDC

program, whereas delay or ineffective action could be enormously costly in New

York (and in each of a number of other large states). It would be totally cost-

ineffective to call for equal sample sizes or equal precision in these two states -- too

costly to take a large sample in Wyoming, and large losses would be risked if a small

sample were used in New York, at least until the error rate is acceptably low.

We think the need for larger samples in the larger states is reasonably

obvious from a cost-benefit point of view without further comment and

justification. The analysis in Section 3.5 of optimum sample size for determining

disallowances using a lower confidence bound provides a rather striking illustration

of this point.

3.5 Optimum Sample Size for Computing Disallowances

We now turn to consideration of optimum sample size when the sole

purpose of QC is assumed to be the computation of disallowances, and the goal is to

minimize the overall cost to the Federal government of overpayment errors in the

AFDC program, taking joint account of the cost to the Federal government of QC
and of the returns from disallowances.

When the point estimate is used to compute disallowances (Rule A) it

is not feasible to determine objectively an optimum sample size based on expected

(or average) results. This is because, whatever the sample size, the sampling errors

of the estimates of the overpayment error rates are both positive and negative, and

when the estimated error rate is used in the computation of the disallowance, the

long-run average effect of the sampling error in the estimation of disallowance is

close to zero for high error rates and is a decreasing function of the sample size. If

the true error rate is dose to the target rate, the average of the disallowances is

positive (as discussed earlier), and increasingly so, as the sample size is decreased.

Consequently, it is no longer true that there is an approximately equal chance of

positive and negative errors. However, it is still true that the Federal government

gains more, on the average, as the sample size is decreased, since the average

expected disallowance is larger. (See Appendix F.)
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Thus, from a simplistic point of view, if the point estimate is used, the

optimum sample size is to make the state sample and the Federal subsample as

small as possible (like a sample of 2), and still make it possible to make an estimate.

Of course, this is ridiculously small; neither the Federal government nor the state

would be willing to deal with such a ridiculously small sample. It just means that

we do not have a basis for obtaining an optimum sample size based jointly on cost

and expected or average return from disallowance.

One might make some assumptions about the cost of errors in the

point estimate that result in much too large a disallowance in some years, and much

too small in others, and possibly arrive at an optimum based on the costs and

disadvantages of such variability. We have not taken this approach here, because it

does not appear very promising, at least at the present stage of this analysis. We

conclude that the determination of optimum sample size for computing

disallowances by Rule A is a judgment decision, not effectively guided by a

mathematical solution, at least for the present.

The situation would be quite different if the lower confidence bound

were to be used in computing disallowances. In this case, from the Federal point of

view, the larger the samples for a state, the smaller the sampling error, and

therefore the higher the average disallowance. But to achieve a larger sample costs

additional Federal funds, both for the Federal subsample and for the state sample.

Under these circumstances, it is possible to determine the sample size that

maximizes the Federal return. This is done in Appendix G where details are

presented. We summarize some results here.

In this analysis it is assumed that the Federal costs for QC indude half

of the cost of the state QC sample, and the full cost of the Federal QC sample. We

used, for determining unit costs, the costs and caseloads quoted in a memorandum

from OFA outlining a meeting on September 4, 1984, with the Ways and Means

Staff regarding the AFDC Quality Control System and Error Rate Disallowances. 2

2Memorandum to Debbie Clmssman from Barbara Levering, Department of Health and Human
Services, Office of Family Assistance, Social Security Administration, dated August 31, 1984,
September4 Meeting mith Ways and Means Staff on AFDC Qwality Control System and ErrorRate
Disallowances and attached outline on BriefingPoints for Ways ad Mea_ 5taft.
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The resulting assumed unit costs were $130 Federal cost (1/2 total unit cost) of the

state sample per case, and $330 per case for the Federal subsample. We also assumed

a target error rate of 3 percent, as called for in 1984 and afterwards by present

legislation. Various levels of total Federal payments were assumed that are

illustrative of payment levels in the various states. We also assumed that the

Federal subsample size was 15 percent of the state sample size, as it is in some of the

larger states. The computations could readily be carried through for other

subsampling fractions, and would yield similar results. We also assumed three

levels of the standard deviation of the payment errors, that the correlation of state

and Federal findings was .9, and that the correlation of R and s_ was .8.3 Given the

above assumptions, we obtained the summary results displayed in Table 3-3.

Table 3-3. Approximate optimum Federal sample sizes (n') for computing annual disallowances based
on a lower confidence bound (Rule C), for alternative levels of total Federal payment, and
of excess of overpayment error rate over the target rate

Excess of payment error rate over targ et
Size of Federal Standard

payment deviation of
($1,000,000) payment errors .01 .02 .03 .04 .06

20 30 .... 84 84 84
50 .... 117 117 117
70 .... 140 147 147

50 30 -- 154 154 154 154
50 -- 215 217 217 217
70 -- 239 271 271 271

300 30 510 510 510 510 510
50 673 716 716 716 716
70 545 800+ 800+ 800+ 800+

500 30 716 716 716 716 716
50 800+ 800+ 800+ 800+ 800+
70 800+ 800+ 800+ 800+ 800+

3Elsewhere we have ass_ .7 for this correlation (see, for example, Appendix E). This .8 assumption
here was based on early results. We have not regarded it as worthwhile to recompute assuming a
correlation of .7.
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We note that the optimum Federal sample size becomes zero (denoted

by "--" in the table) as the excess of the overpayment error rate over the target gets

small. This means that, in such instances, the amount recovered in disallowance is

equal to or less than the Federal cost of QC sampling. On the other hand, the

optimum sample sizes increase and become considerably larger than the present

Federal subsample sizes as the excess of the overpayment error rates over the target

increases, and as the total Federal payment becomes large. (Note that an entry of

800+ in the table signifies that the optimum Federal sample size is greater than 800.

Our computation did not extend beyond that size.) We emphasize, again, that this

optimization is for separate computation of disallowances each year, using the lower

confidence bound in the computations (Rule C), and that the optima are computed

only to maximize net return from disallowances to the Federal government.

From the point of view of a state (instead of the Federal government),

the effect of jointly mini_i_irtg a state's cost of conducting the QC operation and its

losses from disallowances is totally different. Obviously, if a lower confidence

bound is used to compute disallowances, the optimum size of a state sample is the

smallest that it is permitted to use, for this would increase the sampling error and
therefore lower the lower confidence bound and the disallowance. It would

simultaneously reduce the cost of QC.

3.6 The Impact in FY 1981 of Three Disallowance Rules - Rules A, B, and C

For fiscal year 1981, disallowances were assessed against 27 states and

Puerto Rico (see Table 3-4). Waivers were granted in six of those cases. The

disallowances assessed were computed by Rule A, that is,

^

D = (_ - RO) A, if positive,

where R0 and A vary from state to state. (For the states of Arizona and Texas, a

somewhat different and more complex computation was used, but the difference is

not relevant to this discussion.)
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Table 3-4 presents the assessed disallowances for Rule A. It also

presents, for comparison, what they would have been if computed by Rules B or C

(as described in Section 3.2). Rule B computes the disallowances as in Rule A, except

that if the 95 percent lower confidence bound is less than the target level, the

disallowance is waived. The lower confidence bound is computed as R-1.645s_
^

where R and s_ are computed by the current procedures (Equations (1) and (3) in

Chapter 1 except for states that use a stratified sampling estimator).

Rule C bases the disallowance on the lower bound alone, as has been

suggested by some. That is, the disallowance is computed as the excess of the lower

bound over the target rate, applied to the Federal payment:.

I_ = (R - 1.645s_ - R0) A, if positive.

The totals for all 27 states are shown for each rule, as well as the totals

reduced by the amounts for the states for which the disallowance was waived. Thus,

after waivers, the total disallowance is 17 percent less for Rule B than for Rule A,

and is 58 percent less for Rule C than for Rule A. The larger aggregate loss for

Rule C occurs because sampling errors are large enough that the 95 percent lower

confidence bounds are considerably below the point estimates.

3.7 An Alternative Rule for Computing Disallowance -- Rule D

We describe here another rule, designated Rule D, which combines

certain attractive characteristics of Rules A and C, but mitigates certain unattractive

characteristics from the points of view of the Federal government and of the state.

Disallowances as now computed by Rule A are subject to relatively

large sampling errors in many states, even with the larger annual samples in use in

the QC program in some states. These relatively large sampling errors can lead to

substantially overstated or understated annual disallowances in a given year.
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Table 3-4. Disallowances based on alternative rules, FY 1981

Disallowance

State Federal expenditure Rule A Rule B Rule C

AL 55,257,339 46,527 0 0
AZ 18,204,168 209,475* 293,014' 1,642'
CA 1,270,296,772 35,066,542 35,066,542 17,449,396
CO 47,081,958 1,898,203 1,898,203 1,104,828
CT 102,601,922 313,038 0 0
FL 121,842,954 3,467,041 3,467,041 2,408,721
H I 46,619,415 1,211,639 1,211,639 283,859
ID 14,481,785 691,187 691,187 243,773
IN 83,266,989 112,744 0 0
K S 47,251,492 1,902,865 1,902,865 1,174,489
MD 113,146,541 1,325,172' 0 0
ME 40,439,640 167,744 0 0
MN 134,920,297 571,253 0 0
NE 27,006,307 279,947 0 0
NJ 270,515,844 1,279,810' 0 0

NM 32,394,291 2,553,545 2,553,545 1,800,804
NY 755,115,221 6,269,722 0 0
OH 333,931,792 3,930,043 0 0
OK 58,315,715 1,,508,394 1,508,394 526,570
SC 56,158,502 1,003,946' 1,003,946' 456,559*
SD 11,866,284 12,804 0 0
TN 59,079,920 1,754,496 1,754,496 1,093,902
TX 87,575,396 1,112,295 1,396,127 273,375
UT 34,319,580 299,747* 0 0
VT 26,751,544 225,194' 0 0

W A 118,607,888 4,161,714 4,161,714 1,750,039
W Y 4,235,182 412,782 412,782 324,958

To ta Is 3,971,284,738 71,787,869 57,321,495 28,892,915
Total,

after waivers 67,444,525 56,024,535 28,434,713

'Denotes that the dlaallowance was waived.

Rule A: The currant rule, based on the point intimate.
Rule B: Based on exce_ of point eetimate over the target error rate, but only ff the 95 percent lower confidence

bound is above the target error mm.
Rule C: Based on the exce_ of the 95 petn_nmtlow_ confidence bound over the tar_ error rat_.

Note: A somewhat different computation of the di_llowance was done for the stat_ AZ and TX than would
result from a simple application of Rule A. The figurm for throe states in the column headed 'Rule A"
reflect the disallowance as asNued rather than the disallowance computed by Rule A. On the other
hand, the figures in the column headed "Rule B' are computed by Rule B, which for these states gives
the same disallowance as obtained by Rule A.
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The relative magnitude of these sampling errors is illustrated by the

coefficients of variation shown in column 9 of Table 3-1. The limits of 95 percent

confidence intervals would vary from sample to sample, but, on the average, would

correspond to about two times the coefficients of variation shown in that table. For
^

example, the standard error of R of .006 shown in column 2 is approximately

illustrative of the standard errors in the states with the larger QC samples (a state

sample of about 2400 and a Federal subsample of about 360). Column 9 shows that

for such a large state, with an error rate of 5 percent (i.e., R - R0 = .02, with a target

level of R0 --.030, and a sampling error of .006) the coefficient of variation of the

estimated disallowance is .30. Consequently, for such a state, the bounds of the

95 percent nominal confidence intervals would average between 60 percent above

and 60 percent below the correct disallowance. About 5 percent of the time, the

value being estimated will be either below or above the confidence interval. For a

smaller state with a sampling error of .012, this range would be approximately

doubled. These are relatively wide ranges due to sampling error. As seen from the

table, they would be much larger for states with the same sampling errors, but with

overpayment error rates closer to the 3 percent target, and of course would be

considerably smaller for states with overpayment error rates considerably above the

illustrated rate of 5 percent.

From the point of view of the states, the problem of the large

overestimates of disallowances that will occur in some years would be avoided by

use of the lower confidence bound (i.e., Rule C) instead of the point estimate.

However, as illustrated in column 12 of Table 3-1, and also in Table 3-4, with present

annual sample sizes this would result in large losses to the Federal government by

consistently and substantially understating the disallowances that would be assessed

if the true payment error rates were known.

Another problem with Rule A is that disallowances are assessed only

when the estimated error rate is above the target. Thus, because of sampling

variation, a state may be assessed a disallowance when in fact the payment error rate

is equal to or below the target rate. Moreover, since negative disallowances are not

permitted by Rule A, such disallowances would not be compensated for over time.

Consequently, a state that is at or near the target rate, above or below, would on the

average be improperly assessed disallowances. A state whose error rate is
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moderately above the target rate would, on the average, be assessed a considerably

larger disallowance than it would be if the true error rate were known.

To eliminate or substantially reduce these problems, we have

developed and have simulated the application of Rule D for computing

disallowances. This rule accumulates the full disallowances across years, computed

by Rule A except that negative total disallowances are allowed to accumulate on the
books. It assesses an annual cash disallowance on the basis of a lower confidence

bound of the accumulated total disallowance. The final accumulated settlement is

based on the accumulated disallowance based on the point estimates and is made

when the relative sampling error (the coefficient of variation) of the accumulated

total disallowance is acceptably small, say less than 10 to 15 percent. What is

acceptably small is a policy decision.

Convenient computation formulas are given in Appendix H. Over a

few years, the application of Rule D greatly increases the effective sample size and

greatly reduces the large annual fluctuations of disallowances due to sampling
errors. Prior to a final settlement date, at which _e the accumulated disallowance

is based on the annual point estimates and a much larger sample, the Federal

government recovers somewhat less in cash but avoids considerably overassessing

some states each year.

We note that under this procedure, the lower confidence bound of the

accumulated disallowance estimate for a given year, say year i, may be less than the

lower confidence bound of the accumulated disallowance in the prior year, i-1. In

this event, the Federal government could pay the difference to the state. The total
accumulated disallowance would then remain the accumulation of the annual

disallowances. Alternatively, credit could be given against future disallowances.

The choice is a policy decision.

We note, also, that when the excess of the true error rate over the

tolerance becomes small, say, less than one percent, the coefficient of variation of

the accumulated disallowance remains large (above 10 or 15 percent) for many years,

and a settlement would be long delayed. This is as it should be, because the amount

of settlement in such an instance cannot be estimated acceptably from a sample of
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any reasonable size, and therefore even after the sample is accumulated over a

number of years. We also note, as will be seen later, that under Rule D, for states for

which the sample is large and the excess of the overpayment error rate over the

tolerance is also large, a cash settlement may be reached within two or three years or

even annually.

While the application of Rule D will result in considerable reduction

initially in the cash withholding by the Federal government, a temporary cash loss

may be acceptable for a few years in order to avoid substantially overassessing some

states in individual years. Interest charges (or payments) might be introduced for

the amounts carried on the books, in which event the disadvantage to the Federal

government would appear to be reduced or removed. On a relative basis, the

accumulated disallowance based on the lower confidence bound would approach,

over a number of years, the full disallowance based on the point estimate.

Table 3-5 illustrates the expected (average) consequences of applying

Rule D to a state with an annual sampling error of .006, and also of .012, for a fixed

annual Federal payment of $100 million. It shows, for varying levels of the true

error rate, the expected accumulated disallowances over a period of 1 to 16 years,

based on Rule D, compared with those for Rules A and C. Appendix H describes the

application of Rule D more fully, and it contains 16 illustrative examples of

disallowances computed by Rules D and A, for successive years. The tables display

random variations as they may occur in practice, for various values of the true

overpayment error rate, and of the standard error of the estimates.

It is seen from Table 3-5, and from Appendix H, that Rule D provides a

compromise approach between Rule C and Rule A. In the first year, with Rule D,

the cash disallowances are the same as for Rule C, although the balance of the full

Rule A disallowance is recorded as an obligation available for offset in subsequent

years.

While the accumulations are carried through 16 years in Table 3-5, they

could be cut off after the estimated coeffident of variation becomes acceptably small

and the accumulation process would begin again. The accumulated settlement
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Table 3-5. Expected accumulated disallowance compar _ for Rules A, C, and D

Accumulated measures

Rule D
Federal Standard Correct

!:_yment _ error dis- CV
A

R-R 0 Year ($1 mil.) of R allowmnct RuleA RuleC Cash Book Total of total

.05 I 100 .0060 5.0 5.0 4.0 4.0 1.0 5.0 .120
2 200 .0042 10.0 10.0 8.0 8.6 1.4 I0.0 .085
4 400 .0030 20.0 20.0 16.1 18.0 2.0 20.0 .060
8 800 .0021 40.0 40.0 32.1 37.2 2.8 40.0 .042

12 1,200 .0017 60.0 60.0 48.2 56.6 3.4 60.0 .035
16 1,600 .0015 80.0 80.0 64.2 76.1 3.9 80.0 .030

.05 1 100 .0120 5.0 5.0 3.0 3.0 2.0 5.0 .240
2 200 .0085 10.0 10.0 6.1 7.2 2.8 10.0 .170
4 400 .0060 20.0 20,0 12.1 16.1 3.9 20.0 .120
8 800 .0042 40.0 40.0 24.2 34.4 5.6 40.0 .085

12 1,200 .0035 60.0 60.0 36.3 53.2 6.8 60.0 .069
16 1,600 .0030 80.0 80.0 48.4 72.1 7.9 80.0 .060

.03 1 100 .0060 3.0 3.0 2.0 2.0 1.0 3.0 .200
2 200 .0042 6.0 6.0 4.0 4,6 1.4 6.0 .141
4 400 .0030 12.0 12.0 8.1 10.0 2.0 12.0 .100
8 800 .0021 24.0 24.0 16.1 21.2 2.8 24.0 .071

12 1,200 .0017 36.0 36.0 24.2 32.6 3.4 36.0 .058
16 1,600 .0015 48.0 48.0 32.2 44.1 3.9 48.0 .050

.03 I 100 .0120 3.0 3.0 1.1 1.1 1.9 3.0 .397
2 200 .0085 6.0 6.0 2.2 3.2 2.8 6.0 .283
4 400 .0060 12.0 12.0 4.5 8.1 3.9 12.0 .200
8 800 .0042 24.0 24.0 9.0 18.4 5.6 24.0 .141

12 1,200 .0035 36.0 36.0 13.5 29.2 6.8 36.0 .115
16 1,600 .0030 48.0 48.0 18.0 40.1 7.9 48.0 .100

.01 1 100 .0060 1.0 1.0 0.2 0.2 0.8 1.0 .568
2 200 .0042 2.0 2.0 0.4 0,7 1.3 2.0 .420
4 400 .0030 4.0 4.0 0.9 2.0 2.0 4.0 .300
8 800 .0021 8.0 8.1 1.7 5.2 2.8 8.0 .212

12 1,200 .0017 12.0 12.1 2.6 8.6 3.4 12.0 .173
16 1,600 .0015 16.0 16.2 3.5 12.1 3.9 16.0 .150

.01 1 100 .0120 1.0 1.1 0.1 0.1 1.0 1.1 .878
2 200 .0085 2.0 2.3 0.2 0.3 2.0 2.3 .652
4 400 .0060 4.0 4.6 0.4 0,9 3.3 4.2 .536
8 800 .0042 8.0 9.1 0.9 2.8 5.2 8.0 .420

12 1,200 .0035 12.0 13.7 1.3 5.3 6.7 12.0 .346
16 1,600 .0030 16.0 18.2 1.7 8.1 7.9 16.0 .300
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would then be based on the accumulated results of the annual point estimates, and

on a sample several times larger than the sample for a single year. The cut-off time

would be extended more or less indefinitely for states with overpayment error rates

near the target. Various modifications of Rule D could also be considered.

An important consequence of applying Rule D is that, prior to final
settlement, the accumulated cash disallowance and thus the cash disallowance

assessed in each individual year is determined from a confidence interval computed

from the much larger accumulated QC sample. At the time of final assessment of

the full disallowances the samples are much larger than the annual samples. Such

an approach substantially reduces the wide variability in annual disallowances that

occurs due to sampling variability under present procedures, especially for states

with error rates dose to the target or with small samples. This wide variability is

illustrated, in detail, in the column headed "AFDC" of Tables H-1 through H-16 in

Appendix H, giving the annual cash disallowance that would be assessed under the

present rule. (Note that negative values in this column would, under present rules,

result in a zero disallowance.)

Another consequence of Rule D is that it allows only a very low

probability of assessing any cash disallowances against a state that is, in fact, meeting

or near (above or below) the target payment error rate but which would often be

assessed disallowances under the present procedure, due to sampling variability.

We note that in the application of Rule D, there may be an unusually

large Federal withholding in the year of a final settlement. If desired, this

adjustment to the point estimate could be spread over two or three years to make a
smoother series of disallowances.

A question that arises is how to treat waivers in the application of

Rule D. Waivers occur when, for various reasons, all or a part of the disallowance

that would otherwise be assessed against a state for a particular year is waived. In

Table 3-4 above, full waivers for 1981 were granted for six states. No specific

question arose because all waivers were full waivers. With Rule D, as with the

other procedures, the disallowance after a full waiver would be zero. The added

accumulation for that year would then be zero. For a partial waiver, the nonwaived
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part of the disallowance would be accumulated. The computation of the estimated

standard error would reflect appropriately whatever waiver was allowed.

In Table 3-9, we illustrate computation of disallowances for each state

by Rule D for the four fiscal years 1981 through 1984, the years for which

information is currently available. Since waivers are available only for 1981, we

have made the computations without waivers.

We note that, because of some exceedingly high target rates for some

states for 1981 (and to some extent for 1982, also) the results presented in Table 3-9

provide a quite distorted picture from the application of Rule D. For example,

Illinois has a target rate for 1981 of 12.7 percent. Its observed rate of 8.3 percent is still

a high error rate. If Rule D were to be applied to Illinois beginning in 1981, the state

would receive an initial book credit of 17.5 million dollars, to be credited against

future disallowances. It seems highly undesirable to initiate Rule D for such a state,

and more appropriate to initiate the rule for a state with a negative disallowance

only if the target for the state is below a specified level, for example, below 8 percent.

Of course, the setting of this specific target level is a policy determination. If the

specified target level for 1981 were set at 8 percent, then, of the 17 states with 1981

target rates over 8 percent, only one (Maryland) with a 1981 target rate of more than

8 percent has a 1981 observed overpayment rate above its target rate.

In Table 3-6, we provide a summary of the aggregate results from the

application of Rule D for two levels of the allowable 1981 target rate (8 percent and

10 percent) for the initiation of Rule D, assuming that the application of Rule D

begins in 1981. Excluded from these respective summaries are the 16 states with

1981 target levels above 8 percent for which the computed disallowances are

negative, and the 6 states with 1981 target levels above 10 percent for which the

computed disallowances are negative (see Table 3-9).
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Table 3-6. Summary of aggregate disallowances from application of Rule D to eligible states,* 1981-
1984 (thousands of dollars)

Annual Accumulated
(Rule A) (Rule D)

Annual Cumulated Cash Book Total
(000) (000) (000) (000) (000)

Allowable target rate in 1981
is 8 percent or less

Total 1981 70,837 70,837 28,901 34,542 63,443
1982 88,137 158,974 81,422 63,576 144,999
1983 119,836 278,810 179,908 79,407 259,315
1984 158,750 437,560 313,796 102,723 416,518

Allowable target rate in 1981
is 10 percent or less

Total 1981 70,837 70,837 28,901 18,941 47,842
1982 88,518 159,35.5 81,422 41,268 122,691
1983 124,755 284,110 179,908 60,421 240,329
1984 173,591 457,701 320,846 91,092 411,938

*Eligible states are those that have 1981 target overpayment rates that are less than the allowable target, or that
exceed the allowable target but have a positive disallowance for 1981.
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Table 3-7 provides a summary of the additional disallowances that

would be assessed for those states that would reach a full settlement some time

during the four-year period for which data are available if an estimated 15 percent

coefficient of variation were the criterion for settlement on the basis of the point

estimate. Table 3-8 gives similar results if the criterion for a full settlement were an

estimated coefficient of variation of 10 percent.

The District of Columbia is not included in the summaries provided in

Tables 3-7 and 3-8 because its target rate was 16.3 percent in 1983 with a negative

computed disallowance. For D.C., Rule D would have been initiated in 1982 because

the disallowance was then positive, and presumably a complete settlement would

have been made for D.C. for each of the years 1982, 1983, and 1984 since its cv in each

of these years was less than 10 percent. The total settlement for the three years

would have been $9,743 thousand.

Table 3-7. States reaching full settlement by or before 1984, if Rule D were initiated in 1981, and if a
15 percent estimated cv were adopted aa the criterion

Full settlement at end of fiscal ]rear Added settlement

Percent of Federal payment
An-o.mt

State Year cv ($000) This year Cumulative

Arizona 1983 .14 935 2.4 1.2
Colorado 1984 .15 1,207 2.3 0.6
Florida 1984 .15 2,364 1.6 03

Michigan 1983 .15 9,961 1.8 0.6
(Mich.) 1984 .12 1,658 0.3 0.3

New Mexico 1982 .13 935 3.0 1.5
New York 1983 .15 18,177 2.1 0.7
S. Carolina 1983 .14 1,107 2.1 0.7

(S.C.) 1984 .11 100 0.2 0.2

Wyoming 1981 .13 88 2.1 2.1

Total 36,532
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Table 3-8. States reaching full settlement by or before 1984 if Rule D were initiated in 1981,and if a
10 percent estimated cv were adopted as the criterion

Full settlement at end of fiscal year Added settlement

Percent of Federal payment
Amount

State Year cv ($000) This year Cumulative

Michigan 1984 .10 11,619 1.9 0.5
S. Carolina 1984 .10 1,207 2.2 0.6

Total 12,826

In summary, assuming the 8 percent 1981 target level, the total cash
disallowance would be:

Amount Percent
($000) of total

Accumulated total cash, 1981 through 1984,
fromTable3-6 $313,796 73.6

Add cash from 10 complete settlements (Table 3-7) 36,532 8.6

Add cash from complete settlements for D.C.
(notincludedin Table3-6) 9,743 2.3

Total cash disallowances assessed over the

four years 360,071 84.5

Total accumulated on the book at the end of the

four years (102,723 from Table 3-6, less the
additional 36,532 from complete cash settlements) 66,191 15.5

Total accumulated disallowances in four years,
cash plus book 426,262 100.0

Due to possible minor differences from rounding, and especially

because waivers are not available and used in the results presented, and perhaps

because of other factors, Tables 3-6 through 3-9 may differ somewhat from the final
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Cha_ter 3. Consideratio.s in Choice of Lower Co_dence Bound Versus Point Estimate i. Determi.in_ Disallowa.ca

determinations if Rule D were to be applied. Nevertheless, they provide satisfactory

illustrations of the kinds of results that would occur from applying Rule D.

3.8 Summary

A primary purpose of the quality control program in AFDC is to

measure the error rates and to identify likely causes of high rates, in order to guide

corrective action. Another major purpose is the assessment of disallowances, based

on QC estimates of overpayment error rates, in order to recover Federal funds that

have been paid because of overpayment errors above target levels, as prescribed by

law. The assessment of disallowances may also be an important factor in

influencing states to improve their administration and procedures, and thus to

reduce their error rates. The disallowances are currently computed annually using

point estimates. A number of states have presented arguments for the use of lower

confidence bounds in the assessment of disallowances because of the impact of

sampling errors on the assessments. The statistical consequences of using the lower

confidence bound versus the point estimate have been examined, and some

alternative procedures for computing disallowance have been described. They make

use of the point estimate, the lower confidence bound, or both, and one procedure

accumulates the computations of disallowances over time in order to reduce the

effect on the annual disallowance of large sampling errors. The statistical

implications of the four alternatives have been examined in detail and illustrated

with examples.
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Table 3-9. Application of Rule D to states

[ s,.,,.,, j A I RULED !STATE YtNiif Fed Conlrlb Tar9el R-hal e.e. .aumu/ C,umulaled Annual VaJue6 I

(1(po&lltva) CMh Book Fed Cofilrib R-hat slgma(D) Cash Book Tolal cv

AK 1981 17,163,771 .221241 0.18189 0.02825 -675,412 0 0 -675.412 17.163.771 0.1819 450.549 0 -675,412 -675,412 0.67

1982 18,140.020 .130621 0.12086 0.01871 -157,543 0 0 -157.543 33.303.791 0.1523 542,389 0 -832,954 -832,954 065

1983 15.019.618 .040000 0.15498 0.02126 1.726.655 1.726.655 0 1,726.655 48.323.407 0.1531 629,404 0 893,701 893,701 0.70

1984 18,670.392 .030000 0.06827 0.01388 714.516 2,441.171 488,522 225,994 66.993.799 0.1295 680,666 488,522 1.119,695 1,608,217 0.42

AL 1981 55,257,339 .078399 0.07724 0.00818 46,471 46.471 0 46,471 55,257,339 0.0772 450.900 0 46.471 46,471 >1.00

1962 51,190,010 .059200 0.05293 0.00982 -289.771 48.471 0 -269,771 106,447,349 0.0655 570,257 0 -223,300 -223,300 >1.00

1983 52.044.121 .040000 0.03158 0.00475 -436,211 46.471 0 -436.211 158.491.470 0.0544 621.535 0 -661.511 -661,511 0.94

1984 52.634,574 .030000 0.04363 0.00841 717.409 703,881 0 717.409 211.126.044 0.0517 763.053 0 55,608 55,898 >1.00

AR 1981 37,208,159 .074268 0.067118 0.00647 -237,888 0 0 -237.686 37.208.159 0.0679 240.737 0 -237,686 -237,686 >1.00

1982 24,588,499 .057134 0.07027 0.00800 322,988 322.968 0 322,966 61,794,658 0.0688 310.873 0 85.283 85,283 >100

1983 24,888,313 .040000 0.04856 0.00721 212,856 535.824 0 212,856 88,860,971 0.0630 356.867 0 298.138 296,138 >100

1984 28,755,157 .030000 0.03002 0.00693 230.618 760.440 0 230,616 115,416,128 0.0568 410.482 0 528,755 528,755 0.78

AZ 1981 19.204,199 .O(HHS91 0.08278 0.00873 283.089 293.069 1.696 291,373 18,204,188 0.0829 177.127 1,696 291,373 293.069 0.60

1962 21,336,453 .053341 0.11803 0.01054 1,337.581 1,830.830 1,158.028 179.533 39.540,821 0.1007 286.265 1.158,724 470.906 1,630,630 0.18

1983 39,230.909 .040000 0.10030 0.01251 2,385,624 3,998,254 1.901,898 483.725 78.771.530 0.1005 568,165 3,061,622 934,631 3,996.254 0.14

1984 42.759.90(1 .030000 0.09858 0.01174 2,840,028 8,842.290 2.533.497 312,539 121.530.338 0.0991 758.158 5.595,110 1,247,170 6.842,280 0.11

CA 1981 1,270,296.772 .040000 0.06761 0.00643 35,072.894 35.072.894 17.457.244 17,615,650 1.270.296.772 0.0676 10.706.602 17.457,244 17.615,650 35,072.894 0.31

1982 1.366,989,822 .040000 0.06001 0.00790 27.353.486 62,426,360 19.951.197 7,402.269 2.837.288,594 0.0637 15,208,461 37,408,441 25.017.919 62,426,360 0.24

1983 1,493,194,85(1 .040000 0.04806 0.00580 12.034,908 74,4411,288 8,502,820 3,531.989 4.130.451,450 0.0580 17.355,567 45.911,361 28.549,908 74.461,269 0.23

_) 1984 1,586,34(1,359 .030000 0.05177 0.00796 34.534.780 108,996.029 27.777.862 6.754_,889 5,718.797,809 0.0563 21.463.104 73,688.223 35,306,807 108,998,029 0.20

CO 1981 47,081,958 .042135 0.08245 0.01024 1,898,109 1,098,109 1,105,023 793,086 47.061.958 0.0825 482.119 1.105.023 793,086 1,896,109 0.25

1982 45.203.399 .041087 0.06603 0.00697 1,130.409 3.026.518 975.572 154,837 92,365,327 0.0744 576,245 2,080.595 947.923 3.028,518 0.19

1983 51,706.123 .040000 0.0dl223 0.00073 1,150,781 4,179.279 990.985 159.775 144.131,450 0.0700 873,373 3,071.560 1,107.698 4,179.279 0.16

1984 53.929.580 .030000 0.04918 0.00544 867,727 5,047,005 768.230 99,496 197.761.030 0.0(136 733.857 3.839.811 1.207,195 5,047,005 0.15

CT 1991 102.601,922 .070950 0.07400 0.00401 312,936 312,938 0 312,936 102,801,922 0.0740 411,434 0 312,936 312,938 >1.00

1982 105.097,773 .055475 0.06360 0.00902 853,818 1,100,855 0 853,919 207.699.695 0.0687 1.033.415 0 1,166.855 1,166,655 0.69

1983 109.70(!,090 .040000 0.04401 0.00422 435.811 1.902.767 0 435.911 316,405,775 0.0602 1,130,659 0 1,602.767 1.602.767 0.71

1984 111,938.495 .030000 0.03393 0.00458 439.922 2.042,899 1,898 437,924 429.345.240 0.0534 1,240,541 1.998 2,040.690 2,042,889 0.61

DC 1981 44,302,991 .1(12990 0.13564 0.009,49 -1,212,878 0 0 -1,212,876 44,362.691 0.1356 419,671 0 -1,212.876 -1.212,676 0.35

1982 43,215,077 .101490 0.17123 0.01282 3,013.882 3.013.882 657.676 2,356,206 87.578,668 0.1532 895,034 657,676 1,143.330 1.801,006 0.39

1983 40,03(1,549 .040000 0.13150 0.01318 3,683,344 6.677,226 3.371.960 291.384 127,615.217 0.1464 872,167 4.029,636 1,434,715 5,484.350 0.16

1884 37o300,(187 .030000 0.11219 0.01039 3,065,790 9,742,986 2,930,739 135,021 164,918,104 0.1387 954,246 6,880,375 1,569,735 8.530,110 0.11

hi: 1981 16,034.4945 .120495 0.11278 0.01705 -124,027 0 0 -124,027 16.034,496 0.1128 273,388 0 -124,027 -124,027 >1.00

1982 14,158.437 .080249 0.11675 0.02287 545,128 545,126 0 545,128 30,192,933 0.1156 423,760 0 421,101 421,101 >1.00

1983 13,817,760 .040000 0.09371 0.01599 731,410 1.276.538 369,059 362.351 43.910,693 0.1088 478,263 369,059 783.452 1,152,511 0.41

1984 13.785,238 .030000 0.07791 0.01637 860,451 1,936.989 576,954 83,496 57.595,931 0.1014 527.020 946,013 666,949 1.812.962 0.29

FL 1961 121,842,954 .050788 0.07925 0.00526 3.466.676 3.466,676 2,409,397 1.058.279 121,842,954 0.0793 643,331 2,408,397 1,056,279 3,466,676 019

1962 118,832,382 .045399 0.06030 0.00543 1,782,642 5,249,318 1,336,974 445,888 241,475.336 0.0699 914.254 3,745,371 1,503.947 5,249,318 0t7
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Table 3-9. Application of Rule D to states (continued)

i [ An.._ sm.s.cs [ P_ Ao_o,,_ce* I RULEO 1STATE Ysar Fed Contrib Target R-hat ts.a, ANluN Cumulal_l Annual V!dua6 ]

(il positive) Castt Book Fed Caxllrlb R-hal sqama(D) Ca_ Book TolaJ cv

1983 138.762,474 .040000 0.04523 0.00353 725,728 5,975,046 523,472 202,255 380.237,810 0.0609 1,037,205 4,266,843 1.706.203 5,975.046 0 17

1984 144,962.663 .030000 0.05354 0.00686 3.412,421 9,387,467 2,754.905 657,518 525,200,473 0.0588 1,436,911 7,023,748 2,363,719 9.387,467 015

GA 1981 105,505.310 .065285 0.06517 0.00407 -12,133 0 0 -12,133 105,505,310 0.0652 524,361 0 -12,133 -12,133 >100

1962 113.975,476 .052642 0.05143 0.00746 -138.138 0 0 -138.138 219.410,766 0.0580 998,945 0 -150,271 -150.271 >1.00

1983 125,472,468 .040000 0.08725 0.00488 2,164,400 2.164.400 86,732 2.077,868 344,953.254 0.0577 1,171,870 66.732 1,927,397 2,014,129 058

1964 133,8511.211 ,030000 0.041177 0.00614 4,252,875 6.417.075 3,825.760 428,915 478.811,465 0.0589 1.431,183 3,912.492 2,354.312 6,268.804 023

HI 1991 46,619,415 .074969 0.10096 0.01210 1,211,685 1,211,685 283,749 927,936 46.819,415 0.1010 564.095 283,749 927.936 1,211,685 047

1982 43,937,529 .0574ll5 0.01217 0.01416 1,084.150 2.295,044 629,536 454,622 90.556.944 0.0919 840,461 913,265 1.382.558 2,295.844 0.37

1883 43.207.080 .040000 O.(NII01 0.01251 1,253,437 3.540.281 980.503 263,935 133,764.024 0.0845 1,000.908 1,902,788 1,846.493 3,548.281 0.28

1884 41,402,140 .030000 0.04653 0.01231 1,512,420 5,061,701 1,311,255 201.185 178.168,t64 0.0802 1.123,106 3,214,044 1,847,658 5,061.701 0.22

IA 1981 83,079,881 ,085241 0.04260 0.00440 -1,801.388 0 0 -1.901.368 83,879,881 0.0426 369,511 0 -1,901,388 -1,901,386 0.19
1982 70.268.429 .052620 0.04492 0.00531 -541.052 0 0 -541,052 154,246,310 0.0437 525,122 0 -2,442.440 -2,442.440 021

1983 80,125,070 .040000 0.03430 0.00550 -456.713 0 0 -458.713 234.371,388 0.0405 685.536 0 -2,899.153 -2,899,153 024

1984 87,601,937 .030000 0.03662 0.00472 581,249 581.249 0 581,249 322,173,323 0,0394 801.066 0 -2.317,904 -2,31 7,904 0.35

I0 1981 14,481.785 .042925 0.09065 0.01878 691,143 691.143 243.756 447,387 14,481,785 0.0907 271,968 243,756 447.387 691.143 0.39

1982 13.153,079 .041462 0.05430 0.01187 188.850 880.002 102,522 66.337 27,834.864 0.0733 312.294 346.278 513.724 860.002 0.36

1983 14.024,312 .040000 0.02977 0.00975 -143,480 860.002 -190,554 47,095 41,659.176 0.0587 340.917 155.724 560,809 716.534 0.48

1984 13,849,779 .030000 0.09485 0.01924 899.543 1.750,546 748.558 150,965 55.508,055 0.0677 432,702 904,282 711.794 1,616,077 027

IL 1981 390.914.682 .127286 0.08254 0.00703 -1 7,491,868 0 0 -1 7.491o868 390,814.662 0.0625 2,748,130 0 -17,491,869 .17,4,91,868 0.16

1982 401,104,938 .0112430 0.06243 0.00807 0 0 0 0 792,010,518 0.0825 4.559.322 0 -17.491,866 -17,491,868 0.26
1983 411,830,534 .040000 0.04816 0.00762 11.597,148 11.597.148 0 11,597,148 1,203.850,048 0.0776 5,562,036 0 -5,894,721 -5,894,721 0.95

1884 421,053.200 .030000 0.041487 0.00667 14.752.207 26,349.355 0 14,752,207 1,625,703,268 0.0743 6,251,110 0 6.857,486 8,857,486 0.71

IN 1981 83,266,989 ,040000 0.04135 0.00525 112,410 112,410 0 112,410 83.266,989 0.0414 437,152 0 112,410 112,410 >1.00

1992 78,402.924 .040000 0.038511 0.00416 -112,900 112,410 0 -112,900 161.860.813 0.0400 579.906 0 -490 -490 >1OO

1963 82.052.31M .040000 0.04852 0.00474 704,198 818,600 0 704,198 244,322,187 0.0429 699,841 0 703,709 703.709 099

1984 91,288.467 .030000 0.03963 0.00304 879.089 1.695,697 344,353 534,736 335,808,864 0.0420 752.854 344,353 1,238,445 1,582,797 0.48

KS 1981 47,251,482 .040903 0.08117 0.00037 1,902,676 1,902,676 1,174,358 728.318 47,251,492 0.0812 442,746 1,174,356 726,316 1,902.676 0.23

1982 42,607.020 .040452 0.02913 0.00627 -525,015 1,902,670 -647,330 122,315 88.850.412 0.0560 517,102 527,026 850,633 1,377,881 0.38

1083 47,801,194 .040000 0.05111 0.00025 531,071 2,433.747 311,930 218,141 137,660.606 0.0643 650,318 838,958 1.069.774 1,908.732 0.34

1884 43,957.502 .030000 0.05489 0.00863 1.094.102 3.527.849 887.430 206,672 181,818,100 0.0545 775,055 1,726,388 1.276.446 3,002.835 0.26

KY 1961 99,638.877 .081195 0.04974 0.00431 -3,134.141 0 0 -3,134.141 99,838,877 0.0497 429,444 0 -3,134,141 -3,134,141 0.14

1982 83,326.419 .060507 0.03576 0.00421 -2.069,576 0 0 -2.069.578 182.865,206 0.0434 554.514 0 -5,203,719 -5,203.719 0.11

1983 86.117,601 .040000 0.03420 0.00396 -499,482 0 0 -499,482 268,082.897 0.0404 650,987 0 -5,703,201 -5,703,201 011

1984 95,131.090 .030000 0.04140 0.00409 1,090,202 1,090,202 0 1,090,202 364,213.996 0.0407 758,401 0 -4,612,898 -4,612.999 0.16

LA 1961 89,792.909 .087025 0.06705 0.00600 -1,793,613 0 0 -1,793,613 89,782,908 0.0671 538,757 0 -1,793,613 -1,793,613 030

1962 85,012,672 .063512 0.06163 0.00636 -159.994 0 0 -159,994 174.605,581 0.0644 763,279 0 -1,953,607 -1,953,607 039

1983 60.125.078 .040000 0.05675 0.00699 1,342.095 1,342.095 0 1,342,095 254,830.857 0.0620 946,720 0 -611,512 -611,512 >1 00

1984 93,291,207 .030000 0.05793 0.00597 2,605,344 3.947,439 186,973 2,418.371 348,221,864 0.0609 1,098,394 186,973 1,806,859 1,993.831 055
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Table 3-9. Application of Rule D to states (continued)

STATE YNu' Fe(] Contrlb Tlr�el Fi-hit L®. Annum C,umulaled AnnuaJ Valu(16 I

(If positive) Cash Book Fed Conlnb R-hal sIGma(D ) Cash Book Tolal cv

MA 1961 266.657.338 ,119126 0.09260 0.00839 -7.073,353 0 0 -7.073,353 266,657,338 0.0926 2.237.255 0 -7,073,353 -7.073.353 0132

1082 250.948,695 .079563 007382 0.00013 -I,490.793 0 0 -1,490,783 517,504.223 0.0634 2,714,736 0 -6,564.136 -8,564,136 0.32

1983 223.000,995 .040000 0.11434 0.01028 18,577,672 16.577,872 2,166,746 14,406.124 740,504.918 0.0927 3.553,184 2,168,746 5,644,988 8.013,736 0.44

1984 203.307,441 .030000 0.07757 0.00741 0,674,169 28,252.061 9.170,239 503.950 943.872,359 0.0895 3,859,537 11.338,087 6,346,938 17,667,925 0.22

ldo 1981 113,146,541 .I03615 0.11553 0.00741 1.325,512 1,325,512 0 1,325,512 113.148,541 0.1155 838,418 0 1,325.512 1,325,512 0.63

1982 108.521,040 ,071007 0.06210 0.00776 1,094,299 2.419.811 460,556 613,741 219,668.381 0.0994 1.178.677 460,558 1,939.253 2,419.811 0.49

1063 112,256,768 .040000 0.05270 0.00424 1.425.681 3,845.472 1,273,565 152,096 331,925,149 0.0836 1,271,337 1,754.123 2,091.349 3,645,472 0.33

1964 114,551,324 .030000 0.05_ 0.00000 3.052,793 8,899,284 2,766,739 286,054 449,479,473 0.0797 1,445,230 4,520,861 2,377,403 8,898,264 0.21

ME 1961 40,429,640 .074061 0,071HI1 0.00030 187,743 167.743 0 167,743 40,429,640 0.0788 375,996 0 167.743 167.743 >1 O0

1682 41,341,291 .057330 0.04095 0.005111 -077,170 167,743 0 -977,170 81,770,931 0.0597 448,407 0 -509.428 -500,428 0.66

1963 44,763,143 .040000 0.04546 0.00770 245,302 413,045 0 245,302 129,534,074 0.0548 567,211 0 -264,126 -264,126 >1.00

1984 48.837,175 .030000 0.04144 0.00850 558,887 971,742 0 559,897 175,371,249 0.0510 732,790 0 294.572 294,572 >1.00

MI 1961 549,935,657 .074665 0.0721M 0.00755 -1,014,078 0 0 -1,014,070 548.635,857 0.0728 4,149,749 0 -1,014,078 -1,014,078 >1.00

1982 532,150,069' .057343 0.09235 0.00592 13,307,500 13.307,500 3.722.829 9.584,073 1,061,786,839 0.0775 5.210,088 3.722,826 9,570,595 12,293.422 0.42

1083 586,085,345 .040000 0.09144 0.00548 29,119,51M 42,427,084 27,720,859 1,389,926 1,847,874,984 0.0823 6,055,028 31,452,485 9,060,521 41,413,006 0.15

1884 615,275,503 .030000 0.08011 0.00501 30.931,455 73,258,540 29.173.352 1.8541,104 2,263,150,457 0.0617 7,062.964 60.825.836 11,818.825 72.244,462 0.10

MN 1961 134,920,297 .040000 0.04423 0.00795 570.713 570.713 0 570.713 134.920.297 0.0442 1,072,818 0 570.713 570,713 >1.00

1992 127,740,141 .040000 0.03028 0.00700 -1.241,802 570,713 0 -1,241,892 252,01N5,438 0.0374 1,403,864 0 -670,860 -670,960 >1.00

_) 1983 140,175,501 .040000 0.02567 0.00389 -2.008,715 570.713 0 -2,008,715 402,841.939 0.0333 1,506,044 0 -2.679.695 -2,079.895 0.56

Ca.) 1684 161,030,887 .030OOO 0.02014 0.00314 -1,466,103 570,713 0 -1,489,183 S53,572,926 0.0287 1,578,945 0 -4,188,957 -4,168,857 0.39

MO 1081 115,iWll0,355 .06064S5 0.07085 0.00574 -1,148,788 0 0 -1,146,785 119,640,385 0.0706 707,504 0 .1.148.788 -1,146.766 0.69

1992 105.937,011 .000332 0.04772 O.O05iNI -1,336,078 0 0 -1,330,076 222,777,390 0.0509 1,009,361 0 -2,482,866 -2,482,866 0.41

1983 113,032,830 .040000 0.03431 0.003112 -043,157 0 0 -643,157 335,810,235 0.0513 1,097,836 0 -3,126,023 -3.126,023 0.35

1884 120,007,550 .030000 0.03709 0.00524 950,854 850,954 0 850,854 455,917,785 0.0475 1.265,183 0 -2.275.169 -2,275,160 0.56

IM6 1981 48,171,200 .080413 0.09909 0.00689 -1,027,155 0 0 -1,027,155 48,171,208 0.0691 331,900 0 -1,027,155 -1,027,155 0.32

11HI2 42,745,105 .0(15207 0.04738 0.00737 -782,019 0 0 -762,019 110.919.403 0.0589 457,605 0 -1,780.173 -1,769,173 0.26

1983 43,781,504 .040000 0.03491 0.00744 -222,649 0 0 -222,849 134.898.207 0.0511 561,700 0 -2,012,023 -2,012,023 0.28

1904 44,072,252 .030000 0.02027 0.00317 -434,651 0 0 -434,861 179,370,459 0.0434 579,276 0 -2,446,684 -2,446,694 0.24

MT 1881 12,010,070 .0713241 0.04923 0.010711 -348,724 0 0 -349,724 12,019,870 0.0462 129,572 0 -349,724 -349,724 0.37

1052 12,383,808 .0501(13 0.02547 0.001113 -416,560 0 0 -416.599 24,383,335 0.0372 171.845 0 -768,293 -766.263 022

1083 15,404,757 .040000 0.024511 0.00914 -238,239 0 0 -239,239 39,878,092 0.0323 222,683 0 -1,005,532 -1,005,532 0.22

1984 17,408,218 .030000 0.091110 0.01515 6tl3,007 883.007 0 883.007 57,34(I,309 0,0435 345,867 0 -322,525 -322,525 >1.00

NC 1981 106,567,740 .066002 0.05420 0.00418 -1,284,107 0 0 -1,264,107 106,567,740 0.0542 445.453 0 -1,264,107 -1,264,107 0.35

1982 98,970,814 .053031 0.03291 0.00337 -1,980,847 0 0 -1,060,847 203,538,554 0.0440 552,469 0 -3,224,953 '3,224,953 0.17

1983 103,724,778 .040000 0.02664 0.00379 -1,365,018 0 0 -1,385.016 307.283,332 0.0382 678.058 0 -4,569.971 -4,589,971 0.15

1984 102.994,223 .030000 0.03495 0.00437 406,473 499.473 0 499.473 410,247,555 0.0374 613.816 0 -4,000.498 -4,000,498 020

ND 1961 9.854,399 .040000 0.03089 0.00884 -69,774 0 0 -69,774 9.854,399 0.0309 87,113 0 -69,774 -89,774 097
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Table 3-9. Application of Rule D to states (continued)

[ Annuad St"ttatk:s J nute A Diradlowance* I RULED ISTATE Yw Fed C<xtulb TItsel R-halt I.& Annum Cumulaled Annum Velum J

(Il posillve) Cash Book Fed Gonblb R-hat &igma(D) _ Book Tolal cv

1982 8,921,303 .040000 0.01909 0.00547 -186,544 0 0 -188,544 18,775,701 0.0253 89,850 0 -276,318 -276,318 036
1983 9,248,940 .040000 0.02071 0.00741 -178,412 0 0 -178,412 28,024,641 0.0238 121,108 0 -454,730 -454.730 027

1984 9,718,794 030000 0.04887 0.01375 163.956 163,956 0 163.956 37,743,435 0.0297 180,347 0 -290,774 -290,774 0.62

NE 1981 27,008,307 .044331 0.05470 0.01241 280,028 280,028 0 28o,o26 27,006,307 0.0547 335,148 0 280,028 280,028 >1.00

1982 28,287,870 .042166 0.09594 0.018U 1,521,141 1.801,170 653,667 867,474 55,293,977 0.0758 575,990 853,667 947,503 1,801,1 70 0.32

1963 31,381,823 .040000 0.04078 0.00004 213,151 2,014,321 104,394 108,757 86,685.900 0.0653 $42,103 958,061 1,056,260 2,014,321 0.32

1984 32,108,669 .030000 0.01184l 0.01252 1,253.300 3,267,621 1,062,711 190,588 116,654,766 0.0663 757,963 2,020,771 1,246,849 3,267.621 0.23

NH 1981 18,082,118 .08_50 0.04J510 0.01241 -350,574 0 0 -350.574 18,882,118 0.0659 209,507 0 -350,574 -350,574 0.60

1982 14,571,771 .063328 0.05855 0.01130 -88,824 0 0 -09.824 31,453,888 0.0625 268,470 0 -420,198 -420,198 0.63

1083 14,073,851 .040000 0.04340 0.00722 47,850 47,850 0 47,850 45.527,547 0.0568 285,187 0 -372,348 -372,348 0.77

1984 12,883,437 .030000 0.07822 0.01513 582,589 630,439 0 582,588 58.410,984 0.04107 345,438 0 210,241 210,241 >1.00

NJ 1981 270.515.844 .0754111 0.01021 0.007(H, 1,279,209 1,279,289 0 1,279.269 270.515,844 0.0802 2,066,741 0 1,279,269 1,279,269 >100

1982 250,603,933 .057740 0.07341 0.00747 4,020,084 5,300,253 663,319 3,357,685 527,119,777 0.0769 2,818,805 663,319 4,636,934 5,300,253 0.53

1983 248,858,007 .040000 0.041364 0.00578 5,885.387 11.185,620 5,319.831 565.536 778.077.784 0.0728 3,162,596 5,983,150 5,202,470 11.185,620 0.28

1884 245,448,784 .030000 0.(NS130 0.O0(H0 5,228,018 10,413.036 4,821,807 608,408 1,021,524,548 0.0675 3,531,234 10,804,757 5,808,879 18,413,636 0.22

NM 1981 32,394,281 .045037 0.123811 0.01413 2,553,415 2,553,415 1,600,447 752,968 32,304,291 0.1239 457,731 1,600,447 752,968 2,553,415 0.16

1962 30,773,114 .042519 0.10524 0.01095 1,930,120 4,483,536 1,746,092 182,029 63,187,405 0.1148 566,387 3,548,539 934,997 4,483,536 0.13

1963 28,008,817 .040000 0.041025 0.01031 604,804 5,088,399 476,445 128,418 93,037,222 0.0973 648,453 4,024,984 1,063,416 5,088,399 0.13

1884 34,010,013 .030000 0.05014 0.00787 1,010,750 8,099,150 910,827 90,924 127,723,235 0.0868 701,726 4,944.811 1,154,339 6,099,150 0.12

NV 1981 6.11NS.357 .040000 0.02260 0.00674 -107.817 0 0 -107.817 6,196.357 0.0226 41.763 0 -107,817 -107.817 0.39

1982 8.023,800 .040000 0.01255 0.00590 -185.353 0 0 -165,353 12o220,157 0.0176 54,639 0 -273,170 -273,170 0.20

1983 5.434,218 .040000 0.02091 0.00180 -71,134 0 0 -71,134 17,654,375 0.0205 72,761 0 -344.304 -344.304 0.21

1804 5.014,327 .030000 0.02011 0.00873 -48,726 0 0 -40,725 22,738,702 0.02041 87,986 0 -391,029 -391,029 0.23

NY 1881 755,115,221 .071713 0.01002 0.004120 8,272,742 8,272,742 0 6,272,742 755,115,221 0.0800 4,727,021 0 8,272,742 6,272,742 0.75

1802 835.083,462 .055350 0.070511 0.00701 18,811.520 28.084,282 13,632.025 6,178,495 1,590,188.883 0.0798 7,569,749 13.632,025 12,452,237 26,084,262 0.29

1083 883,636,254 .040000 0.09381 0.00911 47,548,487 73,832,729 41,823,460 5,725,007 2,473,834,937 0.0848 11,049,096 55,455,486 16,177,243 73,632,729 015

1884 857,340,305 .030000 0.07114 0.00794 39,384,810 113,017,709 35,499,474 3,885,5045 3,431,175,242 0.0810 13,412,008 90,954,980 22,062,749 113.017,709 0.12

OH 1981 333,931,782 .078181 0.08868 0.00835 3,830,043 3,930,043 0 3,930,043 333,931,792 0.0887 2,788,330 0 3,930.043 3,930,043 0.71

1882 334.115,783 .051448 0.07808 0.00121 5.895.13988,047,5550.0824 3,911,436 3,390,870 6,434,312 9,825,182 0.40

1983 358,720,188 .040000 0.05609 0.00536 5,787,994 15,813,178 5,051,320 738,874 1,027,773,744 0.0732 4,359,262 8,442,190 7,170,986 15.613.176 028

1984 401,820,288 .030000 0.06315 0.00475 13,001,818 20,214,005 12,944,575 857,245 1,429,800,013 0.0708 4,758,803 21,388,764 7,828,231 29,214,995 016

OK 1981 58,315.715 .04.0000 0.04587 0.01023 1,508,828 1,508,828 527,270 981,357 58.315,715 0.0659 596,570 527.270 981.357 1,508,628 0.40

1982 44,318,880 .040000 0.03613 0.O0(HI4 -82,878 1,508,628 -195,777 112,901 102,834,581 0.0539 685,203 331,493 1,094,258 1,425,751 0.47

1983 48,189,858 .040000 0.04051 0.00859 23,547 1,532,174 -156,179 179,725 148,804,439 0,0497 774,458 175,314 1,273,984 1,449,298 0.53

1984 49,396.453 .030000 0.03021 0.00497 10,374 1,542,546 -52,108 62,482 198,202,892 0.0449 612,441 123,206 1,336,468 1,459,672 056

OR 1681 81,574,104 .088113 OO6772 0.01097 -1,871,422 0 0 -1,671,422 81,574,104 0.0677 675,468 0 -1,871,422 -1,871.422 0.36

1982 52,881,730 .089056 0.07069 0.01068 88,409 86,409 0 88,409 114,455,634 0.0691 887,293 0 -1,785,013 -1,785,013 050

1983 52,844,417 .040000 0.05983 0100989 1,047,905 1,134,314 0 1,047,905 167,300,251 0.0662 1,029,773 0 -737,106 -737,108 >1.00
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Table 3-9. Application of RuJe D to states (continued)

STALE YMU FI4 C,Qnbtb T&r0et R-hal ' 8.e. Annual Gumullted ArmuaJ Velum [
{If positive) Ca_ Book Fed C,onlrlio R-hat &igma(D) Cash Book Total cv

1084 57.654.583 .030000 0.04617 0.00724 932.275 2,066,566 0 832.275 224,954.,634 0.0810 1,111,157 0 195,166 185,166 >1.00

PA 1981 421,504,157 .122190 0.08046 0.00582 -13,374,327 0 0 -13,374,327 421,504,157 0.0905 2,368.653 0 -13.374.327 -13.374.327 0.19

1062 420,207,720 .081005 0.08537 0.00704 1,7_6.386 1,706.368 0 1.788.388 641,711,686 0.0679 4,001.665 0 -11.577,939 -11.577.039 0.36

1083 416,640.205 .040000 0.0O00_l 0.01006 21,210,480 23,015,677 10,738 21,206,749 1,258,352,151 0.0889 5,854.596 10.739 0,630,610 0,641,550 0.61

1984 405,821,806 .030000 0.00OS2 0.00867 24.586,790 47,604,676 23.018.090 1,569.709 1,883,974,048 0.0893 6,808.827 23,029.630 11.200.520 34.230.349 0.20

RI 1981 43.270,544 .007738 0.00261 0.08251 -1,524.376 0 0 -1,524,378 43,270,544 0.0525 2,704,642 0 -1.524,376 -1,524,378 >1.00

1982 40.285,720 .068870 0.05684 0.01030 -484,837 0 0 -484,837 83,556,284 0.0586 2,737.036 0 -2.009.015 -2.000.015 >1.00

1883 39,028.672 .040000 0.06187 0.011J 857,484 657.484 0 857,464 122,585,136 0.0605 2,772,902 0 -1,151,551 -1,151,551 >1.00

1N4 41,310,420 .030000 0._!700 0.00871 260,215 1,148,879 0 280,215 163,801,558 0.0548 2,788,583 0 -882,336 -882,336 >1.00

SC 1981 58.150.502 .000618 0.07140 0.0061_1 1,004,170 1,004.170 450,352 547,818 56,158,502 0.0784 333,020 456,352 547.816 1,004,170 0.33

1082 63,663,504 .050268 0.01102 0.00730 2,071,605 3,075,788 1,768,287 303,308 108,742,096 0.0835 517.402 2.224.840 851.126 3.075.766 017

1983 53,878.381 .040000 0.07005 0.00001 1,665,017 4,731,082 1,400,409 255.508 183,418,467 0.0794 872,726 3,625,046 1.106,834 4,731.682 0.14

1084 54,876,425 .030000 0.07784 0.00633 2,625,240 7,356,022 2.525,171 100,070 218,293,912 0.0790 733,556 6.150.210 1.208.704 7,356.922 0.10

80 1881 11,088.284 .045230 0.04631 0.01440 12,0t0 12,818 0 12,816 11,866,264 0.0463 171,824 0 12.616 12,616 :,.1.00

1882 11.888.541 .042615 0.03705 0.00764 -65,436 12,818 0 -83,436 23,285,825 0.0418 102,636 0 -50,823 -50,623 )1.00

1083 11,902,662 .040000 0.02112 0.00401 -226,238 12,818 0 -228,236 35,248,687 0.0348 201.667 0 -278.850 -278,850 0.73

1804 11.740.883 .030000 0.0284)0 0.00870 -10,622 12,010 0 -10,882 48,898,580 0.0333 225,522 0 -287,552 -267,552 0.79

TN 1801 58,078,020 .050000 0.01050 0.00880 1,754,674 1,754,874 1,003,808 660.666 58,079,920 0.0885 401,743 1,093.806 660,668 1.754.674 0.23
1MI2 ltl,010,170 .048000 0.04912 0.00812 -30,708 1,764,874 -215.881 176,073 110.080,098 0.0708 508.779 877,845 836,941 1,714,880 0.30

1913 56,630,402 .040000 0.04451 0.00442 254,0o9 2,000,502 162,114 02,646 166,729,588 0.0820 565.098 1,040,129 929.586 1,069,715 0.29

1014 60,341,833 .030000 0.04201 0.00603 747,352 2,756,055 820,482 t17,070 224,070,921 0.0570 836,751 1.880,811 1,047,456 2.717.087 0.23

TX 1981 87.576,3N .059120 0.07604 0.00778 1,306,962 1.305,952 273,713 1,122,230 87,575,396 0.0751 682,212 273,713 1,122,239 1,385,852 0.49

1082 75,685,413 .040680 0.01344 0.000_NI 2,576,272 3,071,223 2.178,430 306,833 183,140,878 0.0790 924,664 2.450,152 1,521,072 3.971.223 0.23

1013 14,060,011 .040000 0.04827 0.00023 2,770,805 0,741,018 2,198,075 571,629 257,600,788 0.0754 1,272,153 4,649,227 2.082.892 6,741,918 0.19

1004 102,44(J.465 .020000 0.06(HMJ 0.00744 2,751,713 0.41)3,631 2,404,848 -'140,863 380.247.253 0.0702 1.483,012 7,054,078 2,430,555 8,493,831 0.16

UT 1061 34.310,660 .040000 0.041173 0.01181 2110,618 200,610 0 290,610 34.318.580 0.0487 405,314 0 299,610 290,810 >1.00

1862 32,754,350 .040000 0.04001 0.00870 324,606 824,208 0 324,580 67,073,939 0.0483 497.184 0 624,206 624.205 0.80

1943 37,f07,756 .040000 0.05151 0.01_NSI 814,200 1.238,508 113,861 500,318 104,281,684 0.0510 683,802 113,061 1,124,525 1,236,50(I 0.55

1084 35.043,708 .030CIO0 0.06703 O.OOe2l 803.125 2,231.630 866,396 126.727 140,225,402 0.0534 760,639 980,379 1.251.252 2.231.630 0.34

VA 1061 99,066,626 .021475 0.03660 0.00427 -5.506,724 0 0 -5,508.724 00.0458.525 0.0359 423.023 0 -5.506.724 -5.508.724 0.06

1882 93.024.088 .065737 0.04066 0.00477 -2,365,886 0 0 -2.365.886 192,802.814 0.0382 816.172 0 -7.872,390 -7,872.390 006

1883 05.010,662 .040000 0.03757 0.00545 -232.358 0 0 -232,358 288,612,468 0.0380 808,906 0 -6,104,746 -8,104,746 0.10

1084 03.263.012 .030000 0.03456 0.00450 424,301 424,301 0 424.30t 301,865,478 0.0371 913,464 0 -7,880,445 -7,680,445 0.12

VT 1081 26,751.544 .043153 0.05157 0.01338 225,188 225,188 0 225.180 26,751,544 0.0516 358,203 0 225.168 225,166 )I00

1882 25.837,830 .041577 0.04520 0.00700 03.610 318.777 0 83,610 52,689.174 0.0464 413.435 0 318.777 316.777 >1.00

1983 25,020,667 .040000 0.07861 0.01853 971,080 1,280,837 287,968 703.093 77,810,041 0.0582 821,198 267,066 1,021,671 1,289,837 0.48

1964 27.650.3M .030000 0.05834 0.01127 783,668 2.073,704 662,424 121,442 105,289.407 0.0583 695,023 930,301 1,143,313 2,073,704 0.34
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Table 3-9. Application of Rule D to states (continued)

[ Annuad SmtllllCS J Rule A Dila/Iowance* J RULED lSTATE Year Fid C<xItrlb Target R-hit i.e. Annual Cumulated Annual Value6 I
(if positive) Cash Book Fed C4_trlb R-hat sigma(D) Ca_ Book Total cv

WA 1981 118,607,866 .058243 0,09333 0.01236 4,161,585 4,161,595 1,750,036 2,411.559 118.607,9811 0.0933 1,465,993 1,750,036 2.411,559 4,161,595 035

1982 119.737.415 .049122 0.06438 0.00685 1,826,953 5.968.5411 1,475,174 351,780 238,345.303 0.0788 1,679,841 3,225.209 2,763.339 5.988,548 0 28

1963 130.783.014 .04000Q 0.04775 0.00588 1,013,5611 7.002.117 736,884 276,685 369.126,317 0.0678 1,848,039 3,962.093 3,040,024 7,002,117 0.26

1964 147.030.823 .030000 0.04113 0.00526 1,636.454 8.636,571 1,360,985 255.469 516.159.240 0.0602 2,003,339 5,343,078 3,295,493 8,638,571 0.23

WI 1981 221,161,560 .087083 0.082341 0.00714 -1,040,217 0 0 -1,040,217 221,191,560 0.0824 1.579,236 0 -1,040,217 -1,040,217 >100

1962 235,838,352 .083541 0.041470 0.00049 294,583 284,563 0 294,563 457,020,912 0.0733 2,197,613 0 -745,854 -745,654 >1.00

1983 275,601,151 .040000 0.06078 0.004142 2,908,114 3,260,677 0 2,9641,114 732,662,083 0.0648 2,856,515 0 2,220,480 2,220,480 >1.00

1964 266,267,015 .030000 0.00(102 0.00712 10,071.540 13,932,218 7,050,667 3.620,673 1.029.649.148 0.04952 3,550,963 7,050,667 5,841,334 12.692,001 0.26

WV 1981 41,008,616 .098903 0.07981 0.01314 -623,955 0 0 -623,955 41,0(S6,515 0.0736 539,642 0 -623,955 -623,955 0.66

1992 39.295,429 .064401 0.09245 0.00701 691,104 691,194 0 091,194 79,304,045 0.0779 816,847 0 67,239 67,239 >1.00

1863 39.484,472 .040000 0.02810 0.004114 -362,339 981.184 0 -392.338 117,926,517 0.0(522 882,381 0 -325.099 -325.009 >1.00

1084 52,053,559 .030000 0.04101 0.000313 857,400 1,649,595 0 857,400 170,782,078 0.0578 742,365 0 632,301 632,301 >1.00

WY 1881 4,235.182 ,040000 0.13747 0.01281 412.903 412,803 324.951 67,852 4,235.182 0.1375 53,406 324,951 87,852 412,803 0.13

1982 4,317,7041 .040000 0.04771 0.01253 33,290 448,003 -3,911 37.201 6,552,998 0.0922 76.020 321,040 125.053 446,093 0.17

1083 5,580,715 .040000 0.074_41 0.01514 200,160 852,2711 139,250 56,939 14,143,003 0.0861 116,711 460,269 191,989 652,278 0.18

1984 6,004t,734 .030O(X) O.OSSSI 0.01435 155,324 907,503 107,753 47,571 20,213,337 0.0770 145,528 568,042 239,560 807,503 0.16

Total 1981 72,162.850 72.162,950 28,900.797 -19,665,383 9,215,414

1982 94,997.560 187,130.518 82.560,661 6,305,223 88.865,904

1983 181,590,733 340,827,249 188,240,317 75,204,990 263,445.307

1984 230.089,200 571,025.549 368,130,578 123,432,787 491.563,365

*Computed by simple application of Rule A. For states AZ and TX, these differ from the disallowances actually assessed(see
Table 3-4), and for other statesdiffer slightly from those shown in Table 3-4 becauseof variations in treatment of rounding errors.
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APPENDIX A

DESCRIPTION OF THE THREE TEST POPULATIONS

AND THE SAMPLING PROCEDURE USED IN SIMULATIONS

The test populations consist of the cases included in the Federal

subsamples for the year ending September 30, 1982, for three groups of states. The
states used were:

Population A: Illinois, New Jersey, Ohio, Pennsylvania

Population B: Maryland, Michigan, South Carolina, Texas

Population C: Arkansas, Colorado, Hawaii, Nebraska, Oregon,
West Virginia

For each test population, the states chosen provide a sample of approximately

1500 cases that could be used as a test population from which samples could be

drawn, with replacement, to study some of the characteristics of various sampling

and estimation procedures for AFDC.

The following tables give some of the characteristics of each of the

three test populations. Tables A-1 through A-3 provide summary measures.

Tables A-lA through A-3C list the individual cases, by type.

From each population, simple random samples simulating state QC

samples of various specified sizes were drawn in the following way. For each test

population, the cases for which payment errors (ineligible, overpayment, or

underpayment) were found by the state QC or by the Federal review were termed

"error cases." Let P denote the proportion of error cases in the population, and let n

denote the specified size of the state sample.

The number of error cases to be included in the state sample was

_ determined by a random draw from the binomial distribution whose parameters are
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Appendix A

P and n. That number of error cases was then drawn as a simple random sample,

with replacement, from the set of error cases in the test population.

For the balance of the state sample, no error cases were involved.

Consequently, the balance of the sample was drawn as a simple random sample of

payments from the normal distribution whose mean and variance are those of the

payments for the set of non-error cases of the population.

A Federal subsample of n' was drawn from each state sample. Let Ps

denote the proportion of error cases in the state sample that was selected. The

number of error cases to be included in the Federal subsample was determined by a
random draw from the binomial distribution whose parameters are Ps and n '. That

number of error cases in the state sample was then selected for the Federal

subsample as a simple random sample, without replacement.

Subsamples of the non-error cases in the state sample did not have to

be drawn, since estimates of the average overpayment per case, or of its variance, do

not depend on the payment values of the non-error cases in the Federal subsample.

Except as otherwise specified, the statistics given in this report are based

on repeated simple random samples from the test populations. Listings of the

various results for each repetition of the sampling are available. Other sampling

and estimation procedures can be applied if desired.
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Westat, Inc.

Table A-1. Statistics for Population A

Type of case Number Percent

Total cases 1,478 100.00

Cases in which both the Federal and state findings were that there was
no payment error 1,266 85.66

Cases in which payment errors were found either by the state QC or the
Federalreview 212 14.34

Cases which the state found ineligible. Table A-IA lists these cases,
showing the monthly payment and the Federal finding for each case.
In this table, underpayments are shown as zero (as they are treated in
the analyses). 62 4.19

Cases in which the state found no error or only underpayment error, and
for which the Federal review found an overpayment. Table A-2A lists
these cases, showing the monthly payment and the Federal finding. 49 3.32

Other cases in which the state found an overpayment error.
Table A-3A lists these cases, showing the monthly payment, the
state finding, and the Federal finding. 101 6.83

State Federal

Statistic finding finding

Average monthly payment 296_.2 --
Variance of monthly payment 64,892.93 --
Standard deviation of monthly payment 254.74 --
Coefficient of variation of payments 0.86 --
Average monthly overpayment 17.19 21.62
Variance of overlm_ts 3,762.48 4,970.75
Standard deviation of overpayments 61.34 70.50
Coefficient of variation of overpayments 3_7 3.26
skewness n/a 3.8o
Kurto_ (114/o4) n/a 17.70
Percent of cases with overpayments 11.03 12.65

Correlation of state and Federal findings of overpayment errors .828

Regression coefficient for the regre____onof the Federal findings of
overpayment to the state finding .952

Overpayment error rate .0730
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A_endix A

Table A-2. Statistics for Population B

Typeofcase Number Percent

Total cases 1,480 100.00

Cases in which both the Federal and state findings were that there was
no payment error 1,260 85.14

Cases in which payment errors were found either by the state QC or the
Federalreview 220 14.86

Cases which the state found ineligible. Table A-lB lists these cases,
showing the monthly payment and the Federal finding for each case.
In this table underpayments are shown as zero (as they are treated in
the analyses). 76 6.14

Cases in which the state found no error or only underpayment error, and
for which the Federal review found an overpayment. Table A-2B lists
these cases, showing the monthly payment and the Federal finding. 43 2.91

Other cases in which the state found an overpayment error.
Table A-3B lists these cases, showing the monthly payment, the
state finding, and the Federal finding. 101 6.82

State Federal

Statistic finding finding

Average monthly payment 210.06 --
Variance of monthly payment 14,633.67 --
Standard deviation of monthly payment 120.97 --
Coefficientof variationof payments 0.58 --
Average monthly overpayment 15.04 16.69
Variance of overpayments 3,175.10 3,487.75
Standard deviation of overpayments 56.35 59.06

Coefficient of variation of overpayments 3.75 3.54

Skewness (g3/o3) n/a 4.90

Kurtosis (_4/o4) n/a 32.10

Percent of cases with overpayments 11.96 13.11

Correlation of state and Federal findings of overpayment errom .940

Regression coefficient for the regresaion of the Federal findingg of
overpayment to the state finding .985

Overpayment error rate .0795
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Table A-3. Statistics for Population C

Type of case Number Percent

Total cases 1,525 100.00

Cases in which both the Federal and state findings were that there was
no payment error 1,317 86.36

Cases in which payment errors were found either by the state QC or the
Federalreview 208 13.64

Cases which the state found ineligible. Table A-lC fists these cases,
showing the monthly payment and the Federal finding for each case.
In this table underpayments are shown as zero (as they are treated in
theanalyses). 68 4.46

Cases in which the state found no error or only underpayment error, and
for which the Federal review found an overpayment. Table A-2C lists
these cases, showing the monthly payment and the Federal finding. 54 3.54

Other cases in which the state found an overpayment error.
Table A-3C lists these cases, showing the monthly payment, the
state finding, and the Federal finding. 86 5.64

State Federal

Statistic finding finding

Average monthly payment 254.66 --
Variance of monthly payment 37,495.08 --
Standard deviation of monthly payment 193.64 --
Coefficient of variation of payments 0.76 --
Average monthly overpayment 13.66 16.87
Variance of overpayments 3,312.03 4,365.03
Standard deviationof overpayments 57.55 66.07
Coefficientof variationof overpayments 4.21 3.92

Skewness O.r3/o3) n/a 4.50

Kurtosis (g4/o 4) n/a 24.70

Percentof caseswithoverpayments 10.10 11.21

Correlation of state and Federal findings of overpayment errors .809

Regres__s_ioncoefficient forthe _on of the Federal findingsof
overpaymentto thestate finding .928

Overpayment error rate .0662
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Table A-lA. Cases in Population A that state found ineligible, with Federal finding

Amount overpaid Amount overpaid

State Federal State Federal

129 129 270 270
250 250 318 318
153 153 302 302

368 302 302
.,x_:, 368 250 250
250 250 125 ;5
250 250 434 434
302 302 319 0
348 348 273 273
273 273 273 273
360 360 273 273
137 137 360 360
273 273 263 263
360 360 216 216
360 360 216 216
360 360 216 216
273 273 216 0
360 360 216 216
350 350 216 216
273 273 111 111
216 216 263 263
216 216 131 131
216 216 395 395
216 216 321 321
111 111 273 273
216 216 321 321
263 263 172 172
216 216 265 265
262 262 387 387
318 318 172 172
381 381 360 360

Total cases 62
Cases with Federal zero 2
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Table A-lB. Cases in Population B that state found ineligible, with Federal finding

Amount overpaid Amount overpaid

State Federal State Federal

118 118 240 240
55 55 606 606

118 118 259 259
141 141 29_s 225
112 112 84 0
12 12 409 409

141 141 395 395
164 164 2173 273
23 23 434 434

141 141 413 413
85 85 206 206

153 153 491 491
141 141 327 327
118 118 102 102
164 164 133 133
102 102 172 172
102 102 163 163
102 102 97 97
102 102 204 204
48 48 141 141

133 133 118 118
163 163 118 118
102 102 14 14
163 163 85 85
133 133 23 23
72 72 118 118

102 102 23 23
211 211 85 85
211 211 230 230
27O 27O 295 295
247 247 67 67
326 326 355 355
326 326 270 270
134 134 211 211
211 211 211 211
211 211 247 247
211 211 326 326
295 295 326 326

Number of cases 76
Cases with Federal zero 1
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Table A-lC. Cases in Population C that state found ir::_igible, with Federal finding

Amount overpaid Amo'unt overpaid

State Federal State Federal

140 140 98 98
122 122 116 116
122 122 186 186
89 89 140 140

247 247 59 59
247 _47 86 86
283 :83 415 415
247 247 247 247
63 0 222 222
50 50 224 224

168 168 390 390
185 _85 365 365
523 523 420 420
175 175 420 420
375 375 45 45
468 468 560 560
72 72 240 240

155 155 560 560
86 86 231 231

286 286 409 409
547 547 58 58
480 480 206 206
286 0 206 206
286 286 206 206
134 134 206 206
164 164 249 249
54 54 164 164
86 86 122 122

164 164 179 179
164 164 10 10
164 164 142 142
164 164 122 122
164 164 100 100
164 164 140 140

Total cases 68
Cases with Federal zero 2
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Table A-2A. Cases in Population A for which the state found no error or only underpayment

Federal Federal

Payment Ineligible Overpayment Payment Ineligible Overpayment

302 302 221 0
240 12 236 0
236 236 250 250
360 87 302 302
195 68 357 0
360 132 236 0
414 414 334 165
234 0 477 477
174 0 413 413
324 324 324 100
216 105 263 245
263 263 216 216
90 0 131 0

327 189 263 47
216 101 327 64
216 216 327 327
224 0 263 263
216 0 48 0
175 175 438 57
113 0 194 0
381 63 404 153
381 381 337 211
438 57 214 140
265 0 223 0
321 0

Total cases 49

Federal finding:
No overpayment cases 16
Ineligible cases 15
Other overpayment cases 18
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Table A-2B. Cases in Population B for which the state found no error or only underpayment

Federal Federal

Payment Ineligible Overpayment Payment Ineligible Overpayment

118 11 314 0
I18 50 395 35
141 23 450 0
23 0 249 0

107 0 318 0
133 133 306 0
133 133 223 0
102 102 182 0
72 72 314 0
44 0 383 0

193 31 204 32
113 0 236 44
94 0 133 133

326 284 106 0
270 270 118 10
422 422 118 118
225 0 118 0
502 0 118 118
29 0 131 131

205 0 326 28
305 0 270 270
386 56

Totalcases 43

Federal finding:
No overpayment cases 21
Ineligible cases 11
Other overpayment cases 11
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Table Ao2C. Cases in Population C for which the state found no error or only underpayment

Federal Federal

Payment Ineligible Overpayment Payment Ineligible Overpayment

83 48 59 0
247 0 116 116
130 0 264 0
76 0 62 0

434 0 856 856
375 375 56 0
297 0 448 448
57 0 210 210

280 10 3.5O 3.5O
140 0 286 286
190 79 436 39
150 0 257 200
355 355 286 177
323 0 239 140
286 0 177 117
150 150 134 134
286 286 176 0
253 0 164 17
204 0 136 82
361 278 176 30
286 286 134 0
339 199 122 33
547 67 100 0
69 0 51 51
98 0 20 0
65 0 100 100

161 0 173 0

Total cases 54

Federal finding:
No overpayment cases 26
Ineligible cases 14
Other overpayment cases 14
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Table A-3A. Cases inPopula6on A forwhichthesm_foundeligiblebutoverpayment

Federal Federal

l

State _ State

Payment overpaymenl in_igibie :Overpaymenl Payment overpaymenl Ineligible Overpaymen Y
.,....

250 98 98 326 23 287
302 52 52 478 40 40 -_
250 1'._ 1'0 381 _3 63
250 170 ! 0 536 _ 536
302 62 62 395 _1 51
225 192 192 264 89 89
225 72 72 714 200 200

80 9 9 368 q 58
649 424 424 309 52
153 I 73 73 250 24
302 _: 52 52 250 170
237 65 65 242 40 ai_
250 30 30 368 66 66
502 60 60 302 222 222
236 56 56 700 51 51
468 54 54 302 52 52
360 87 87 284 80 80
246 136 0 378 54 54
360 87 0 414 54 54
188 166 1_ 414 54 54
414 54 54 522 54 54
522 54 54 360 90 9'_
273 136 136 311 65 15
273 136 136 414 54 0
273 136 136 246 136 136
273 136 136 180 41 41
360 87 0 263 47 0
360 91 91 216 99 216
414 141 141 127 63 63
414 141 _:1 263 37 37
263 47 47 206 131 131
262 64 64 200 64 64
164 14 14 216 105 105
263 51 51 263 47 47
475 148 148 327 64 64

1105 104 104 167 18 18
263 152 152 341 84 84
263 47 47 424 43 43
327 64 64 384 63 63
381 301 301 481 43 43
302 47 47 335 73 73
536 98 98 253 12 0
286 55 55 385 63 63
438 120 120 438 194 194
451 la4 119 94 43 43
381 63 63 327 73 73
318 129 129 74 34 34
441 13 13 262 90 90
436 57 57 224 220 220
234 46 0 84 22 22
318 86 44

101 cases, of which 7 showed no Federal overpayment
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Table A-3B. Cases in Population B for which the state found eligible but overpayment

Federal Federal

S_te S_te

Payment overpaymenl [n_isib_ Overpaymenl Payment overpayment Ineligible Overpayment

139 63 0 318 11 11
121 43 121 568 76 76
118 47 47 354 106 106
164 14 37 106 87 87
110 12 12 327 68 68
183 53 62 568 76 76
102 28 28 418 76 76
184 21 21 406 59 59
163 129 129 506 18 56
193 127 127 253 9 9
270 177 112 421 13 11
685 42 42 276 23 0
211 79 73 241 52 241
270 111 117 451 51 51
270 59 70 372 31 31
211 91 91 190 51 51
270 50 41 439 112 112
326 266 266 305 21 0
270 141 141 297 33 33
270 59 59 607 74 74
211 91 91 543 238 171
222 56 60 102 30 30
553 31 31 223 30 30
404 20 20 102 17 17
306 105 105 163 17 17
640 17 17 72 18 18
348 206 206 133 32 32
421 73 73 218 14 14
601 316 316 82 34 23
360 75 75 164 120 120
206 116 116 141 46 46
511 13 13 164 16 16
487 73 0 118 70 70
405 162 162 118 63 63
548 74 48 118 63 63
395 67 68 164 31 31
530 97 97 118 30 30
478 50 50 164 108 108
511 83 83 81 23 23
203 83 83 141 23 23
576 19 19 69 32 32
460 320 320 164 62 62
620 595 595 85 32 32
641 208 208 510 56 56
305 75 75 131 5 9
403 32 32 295 252 252
296 67 67 295 65 65
274 85 85 230 90 90
458 28 28 270 59 70
327 193 193 326 266 266
292 67 67

i

lOlcases, of which 4showednoFederaloverpaymem
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Table A-3C. Cases in Population C for which the state found eligible but overpayment

Federal Federal

State State

Payment overpaymenl In_igib_ Ovm-paym_t Payment overpaymenl Ineligible Overpaymen

122 105 105 59 49 49
450 137 137 140 39 0
308 152 152 253 63 63
247 227 227 253 83 83
183 94 94 247 62 62
247 158 158 379 61 61
91 6 6 379 55 0

383 78 78 379 105 105
247 67 67 543 47 47
214 17 17 298 59 66
189 28 28 359 84 84
313 66 66 468 120 120
247 6 6 531 63 63
546 15 15 474 19 19
546 396 396 336 112 112
546 15 15 222 81 81
521 468 0 373 53 53
128 39 39 350 106 106
254 17 17 390 93 93
546 78 78 410 78 44
334 77 77 122 63 63
420 70 70 448 25 25
490 210 210 118 22 0
420 80 0 350 70 350
350 70 70 174 10 0
164 18 0 286 200 200
203 9 0 339 48 48
301 8 8 403 33 33
323 15 15 376 30 30
763 55 55 266 18 18
286 200 200 222 19 19
329 53 53 212 52 52
281 75 75 134 116 116
134 44 44 134 44 44
164 43 43 98 66 66
164 18 18 206 30 30
90 64 64 90 17 90

215 39 39 206 42 42
164 30 30 76 10 10
206 42 42 142 32 32
206 148 148 100 49 49
206 148 148 100 17 17
164 25 0 72 10 10

86 cases, of which 9 showed no Federal overpayment
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APPENDIX B

EVALUATION OF THE REGRESSION AND DIFFERENCE ESTIMATORS

Classical regression analysis assumes a linear relationship between the

dependent and the independent variables, and that the dependent variable is (at

least approximately) normally distributed for each value of the independent

variable. As noted earlier in this report (Section 2.2), the requirements of classical

regression analysis are reasonably well satisfied in the application of the regression

estimator when one considers the fact that the "independent" variable is the Federal

subsample mean of the error per case as determined by the state review and the

"dependent" variable is the mean error per case as determined by the Federal re-

review for the cases in the same subsample. Relationships between these means

were illustrated in Section 2.2 (Figure 2-1) by scatter diagrams for 1000 samples

drawn from Test Population A for each of four sample sizes. We include here

similar scatter diagrams for the other two test populations which we have examined

(Figures B-1 and B-2).

We emphasize that the linearity is not required for the regression

estimator to be consistent (i.e., unbiased in large enough samples). However, the

close approximation to linearity that is illustrated in the figures leads to negligible

bias even for the smallest sizes of Federal subsamples. A little algebra brings out

how the bias decreases with sample sizes, and becomes negligible for large enough

samples.

The regression estimator of the mean error per case is

Then, conditional on the state sample S, the expected value of W' is
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Figure 13-1. Mean findings of dollar error per case in 1000 independent samples for each of four sample
sizes, Population B
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and therefore over all possible state samples,

E(_")= a +EE{b'(_-_')Is}. -

Thus, the bias of _" as an estimate of X is

EE {b'(_ -_') IS}.

We note that

E{b'(f -_') IS}=-Coy(b's'lS)

= Pb'_'_s(_'lSay'fs

Since each of these standard deviations is of order 1/ h'm-;--and the correlation

coefficient is no greater than 1 in absolute value, the bias is of order no greater than

1/n'. Thus, .::e bias decreases with increases in the size of the Federal subsample

and is negligible for sufficiently large samples.

1

Also, since the bias of _" (and of R) is of the order _-, and the standard error
1

is of the order x/__., the ratio of the bias to the standard error de.-eases with

increasing sample size and is negligible for large enough samples.

We have also examined the distribution of the residuals, d i = x"i- (a + b Y-'i),

for the lines of regression shown in Figure 2-1 in Chapter 2, and in Figures B-1 and

B-2 above. The coefficients a and b of the regression line are computed from the

known population parameters. Summary measures for the distributions of the 1000

residuals are given in Table B-4 for each of the four sample sizes for the three test

populations. The summary measures in the table are defined as follows:

Mean d = Y-di/1000
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Standard deviation g = [_ (di-d)2/lO00]l/2

E (di-3)z
Skewness 1000 / 03

E (di - 3)4
Kurtosis 1000 / o4

It is seen from the measures of skewness and kurtosis that the

distributions show some moderate departure from normal, but are reasonably close
to the values for a normal distribution of 0 for skewness and 3 for kurtosis.

B.1 Comparison of the Regression and Difference Estimators

We initially had some concern that the approximations that are

involved in the regression estimator and the estimator of its variance may not be

totally satisfactory because of the relatively small sizes of the Federal subsamples.

The so-called difference estimator, on the other hand, provides unbiased estimates

for any sample size and an unbiased estimate of its variance is available. We have,

therefore, on occasion, considered the use of the difference estimator to replace the

regression estimator. To compare these alternative estimators in the context of the

AFDC quality control program, we have simulated sampling from Population A,

described in Appendix A.

A

The regression estimator R is defined by

^

R = {i' + b(_-_)} /

and the difference estimator R is defined by

P, = {7 +k(F-?')} /

where
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_' = Zxi/n' is the average overpayment in the Federa_ subsample whose size
is n', the average being computed over all cases in the
subsample, regardless of whether there was an overpayment, as
determined by the Federal review;

= Zyi/n is the average overpayment in the state QC sample whose size is
n, as determined by the state review;

V' = Zyi/n' is the average overpayment in the Federal sample, as
determined by the state c_c review;

b = ?)/Z(yi- F)2

is an estimate of the regression coefficient, as estimated from the
Federal subsample;

k is a constant which, if it were equal to the true value of the
regression coefficient, would minimize the variance of the
difference estimator;

xi, Yi denote respectively the Federal and state determination of the
overpayment for case i;

is the average AFDC payment per case in the state .-'a_ sample.

From Population A, 1000 samples were drawn using simple random

sampling (see Appendix A) for various sample sizes to simulate state QC samples,

and from each sample a simple random subsample was drawn to simulate a Federal

subsample. For each sample, the regression estimate and three difference estimates

using three values of the constant k were computed, as well as the appropriate
A

estimates of their variances. The standard error of the regression estimate R is

estimated by

sE = sx {(1- r2(1-n'/n))/n'} 1/2 /
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and the standard error of the difference estimate R for a given value of k is
estimated by

s ao= +k 2y-2krs,,s/n'+s2/np/2,

where

2
sx = E(xi-_')2/(n'-I )

is the unit variance of overpayments as determined by the Federal
review for the cases in the Federal subsample, and

s_ = Z(yi-_')2/(n'-l)

is the unit variance of overpayments as determined by the state QC
review for the cases in the Federal subsample.

Results of the simulation comparing the estimators are shown in
Tables B-1 and B-2.

The true value of the overpayment error rate in Population A is .0730.
^

Table B-1 shows that the average value of R, estimated from the 1000 independent

samples is very close to the true value for each of the three sample sizes. This

indicates, as discussed more fully below, that the bias, if any, of the regression

estimator is trivial for this population, even for the small sample sizes considered.

The fact that the average values of the difference estimates R differ slightly from the

true value is due to sampling variation, for the difference estimator can be shown to
be unbiased.

Table B-2 shows, for each of the four estimators and for each of the

three sample sizes, the variance (i.e, the square of the standard error) of the

estimated payment error rate, the average of the estimated variances given by the

formulas above, and the standard deviation of the estimated variances. We note

that the variances, estimated by 1000 repetitions of the sampling procedure, differ

very little among the four estimators, for each of the sample sizes. The average of
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the variance estimates also appears to differ little among the four estimators of the

payment error rate. The fact that the average of the variance estimates is slightly

smaller than the estimate of the true variance is attributable to sampling variation,

since the variance estimator for the difference estimator of the payment error rate

can be shown to be unbiased. For each size of sample, the four estimates of the

payment error rate and of its variance were made from the same sample and hence

are expected to be similar. The reasonable interpretation of these results is that the

bias of the estimator of the variance of the regression estimate is trivial.

We note also that the standard deviation of the estimated variance

increases with a decrease in the sample size, approximately as predicted by statistical

theory.

B.2 Validity of the Regression Estimator

Examination of Table 13-3 indicates that while the average value of the

estimated payment error rate is very dose to the population value, in 11 of the

12 independent estimates the average value is somewhat less than the true payment

error rate for the population. The largest of the individual differences is 2.3 times its

estimated standard error. These results suggest a small downward bias of the

regression estimator. However, the indicated biases are all so small that they

contribute trivially (less than l percent) to the mean square error, and are so small

that they can be neglected. There is no such indication of a bias in the estimates of

the standard error of the estimated payment error rate.

We emphasize that the absence of appreciable bias in the regression
estimator or in the estimator of its variance does not suffice to ensure that the

estimator of the payment error rate is satisfactory. The variability of the estimated

variance is quite large, as can be seen from the simulation results presented in

Table B-3. Hence, much of the variation of the standard error between years for a

given state, and much of the variation between states in a given year, may be due

simply to sampling error.
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Various sample sizes have been used in this appendix and elsewhere

in this report. One set of sample sizes, in particular,

n = 1200 n' - 180
n = 500 n'= 80
n = 300 n' = 50

was used in initial analyses. The largest of these sample sizes was intended to

approximate the six-month sample sizes in use in the larger states. The smaller

sample sizes were chosen to evaluate results with small Federal sample sizes even

smaller than those in use. Later, in order to approximate more nearly many of the

annual sample sizes currently in use in AFDC, additional sample sizes were used in

the simulations, as follows:

n = 2400 n'= 360
n = 1200 n'= 360
n = 880 n'= 260
n = 350 n'= 160

These sample sizes were generally used in the more recent analyses.

Similarly, Population A was the only test population that was defined

initially. Many of the earlier simulations used only that test population. Later, Test

Populations B and C were defined, in order to examine the stability of the

conclusions for various populations. Generally, the condusions were found to be

very similar for the test populations, and consequently, some of the analyses were

limited to one or two test populations.

However, many of the simulations and analyses were carried through

for all three test populations. For example, Tables C-2A through C-2C in

Appendix C show a number of comparable simulation results for all three test

populations. From those tables, we summarize in Table B-3 the regression estimates

of the overpayment error rate for each of four sample sizes for each of the three test

populations, and their estimated standard errors, and comparisons can be made

with the true overpayment error rates that are being estimated.
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A

Table B-1. Average values of the estimated payment error rate R and its estimated standard deviation
based on 1000 independent samples from Population A, _-estimator and sample size

Average Standard Average Standard Average Standard
A A A

Estimator R deviation R deviation R deviation

Regression 0.0727 0.0118 0.0727 0.0176 0.077_3 0.0228

Difference
k=l 0._, -'8 0.0117 0.0728 0.0173 0.0725 0.0222
k=.9 0.0728 0.0118 0.0727 0.01 73 0.0726 0.0223
k=.8 0.0728 0.0120 0.0726 0.0176 0.0727 0.0228
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Table B-2. Variance of the estimated payment error rate and the average of estimates, by estimator and
sample size (based on 1000 independent samples from Population A)

Sample size Sample size Sample size
n--1200,n'=180 n-S00,n'--80 n=300,n'=50

Standard Standard Standard

Average deviation Average deviation Average deviation
variance of variance of variance of

Estimator Variance estimate variance Variance estimate variance Variance estimate variance

Regression 1.39E-04 1.30E-04 .6300E-04 3.10E-04 2.90E-04 2.06E-04 5.20E-04 4.70E-04 4.26E-04

Difference

k=l 1.37E-04 1.31E-04 .6400E-04 2.99E-04 2.94E-04 2.08E-04 4.93E-04 4.79E-04 4.33E-04
k=.9 1.39E-04 131E-04 .6300E-04 2.99E-04 2.94E-04 2.07E-041 4.97E-04 4.79E-04 4.30E-04
k=_ 1.44E-04 1.35E-04 .6300E-04 3.10E-04 3.03E-04 2.07E-04 5.20E-04 4.94E-04 4.30E-04

Average 1.40E-04 1.32E-04 .6300E-04 3.05E-04 2.95E-04 2.07E-04 5.08E-04 4.81E-04 4.30E-04
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Table I3-3. Some summary statistics from 1000 simulations for Populations A, B, and C

Sample size Test population

n n' A B C

R .07297 .07945 .06623

2400 360

.07306 .07893 .06592

_ft .00025 00023 00028

a ii .00792 .00736 .00872

_'ii .00791 .00713 .00861

s.e. (_'ii) .00004 .00004 .00007

s.c. (Sl_) .00138 .00139 .00227

1200 360

.07245 .07906 .06601

aft .00027 .00026 .00030

ot .00839 .00807 .0o937

_ii .00884 .00895 .00966

s.c. (_R) .00004 .00004 .00007
s.c. (Sl_) .00126 .00139 .00214

88O 26O

.07271 .07882 .06564

6_ .00033 .00031 .00035

_ii .01036 .00973 .01091

sJk .01033 .01040 .01116

s.c. (gl0 .00006 .00006 .00009
s.e. (si[) .00182 .00190 .00289

35O 160

.07290 .07930 .06607

_ ooo48 .0oo49 00051

1_ .01513 .01560 .01624

;il .01451 .01544 .01552

s.c. _ii) .00009 .00011 .00015

s.c. (sl_) .00292 .00363 .00471

A

R True !:myma_t m-rot rate i_ EiN:Ltt_t _4 ,tzttl_la_ _ of R rial' · iit_, imml_,

.._ A

Pattmatndm"t_rate_nraaln#a saml_ aR Meremttmamof tl_ stnndard_ _ R
A

RK Meanv_ludo_1000mUm·tme_R sLt(s_) Eaemamdjtmda_l .,,_ etsR
A

aA

og F_uma_Bdsumdard_ o_R re. (-_ F_i_atedstandardeTorO__R

_R Es_ed .tandarde-rotof
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Table B-4. S_ measures for distribution of residuals, for regression of x' on y'

Sample size

2400/360 1200/360 880/260 350/160

Population A
Mean 0.000 0.000 0.000 0.000
Standard deviation 2.044 2.043 2.491 3.052
Skewness 0.383 0.353 0.485 0.538
Kurtosis 3.398 3.084 3.045 3.432

Population B
Mean 0.000 0.000 0.000 0.000
Standard deviation 1.029 1.008 1.173 1_532
Skewness 0.776 0.823 0.885 1.122
Kurtosis 3.681 3.872 3.900 4.*.*.4

Population C
Mean 0.000 0.000 0.000 0.000
Standarddeviation 1.988 1.970 2.281 3.061
Skewness 0.480 0.572 0.636 0.845
Kurtosis 3.090 3.631 3.648 4.092
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COMPUTATION OF CONFIDENCE INTERVALS

Confidence intervals for the payment error rate are produced in the

current AFDC quality control program in the following way. An estimate of the

standard error of the estimated payment error rate is computed by the formula

given for s_ in Section 1.1 of Chapter 1 (Equation (3)) and also in Appendix B. The

lower and upper bounds of the nominal confidence interval at a given confidence

level are defined by _ + t s_, where, for example, t=1.96 for the 95 percent confidence

level and t=1.645 for the 90 percent confidence level. These values of the
A

coefficient t are appropriate if R were a mean estimated from a simple random

sample from a normal distribution, and s_ its estimated standard error. This is a

commonly used procedure. Such confidence intervals are referred to as nominal

confidence intervals for the specified level of confidence (say 95 percent) because the

actual probabilities may not conform to the specified level of confidence.

^

Suppose that the samples were large enough that R and sl_ were

approximately normally distributed and also large enough that the coefficient of

variation of s_ was small (say less than .02). For a nominal confidence level of

95 percent, these conditions are sufficient for the actual probability to be close to

2.5 percent that the lower bound of the interval is greater than the value being

estimated, 2.5 percent that the upper bound is less than the value being estimated,

and 95 percent that the value being estimated is between the bounds. Similar

statements hold for the 90 percent confidence interval. (See the attached Technical

Note for Appendix C.)

For the QC samples in use in AFDC, the distribution of l_ appears to be

reasonably dose to normal, although still slightly skewed to the right and somewhat

more skewed for the smaller sample sizes (see Figure 2-2 in Section 2.3 of the

report). The distribution of s_ is also skewed but still reasonably approaching
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normality (see Figure C-l). Moreover, and particularly relevant, is that the

coefficient of variation of s_ is quite large, being several times larger than it would
^

be if the estimate R were the sample mean of a normally distributed variable based --

on a sample of size n', and s_ were the associated estimate of its standard error.
^

Also, R and s_ are positively correlated. The results are not sensitive to that

correlation (which remains constant with increasing sample size), but are highly

sensitive to the coefficient of variation of sl_ (which decreases w_:h increasing

sample size).

Estimated values of the coefficient of variation Vs_ and of the

correlation _ of R and s_ for the regression estimator, for various sample sizes,

drawn from Test Populations A, B, and C, are given in Table C-1.

Table C-1. Correlation of R and Sl_, coefficients of variation of Sl_ and of _, estimated from
1000independent samples of Test Populations A, B,and C, for various sample sizes

Sample sizes Population A Population B Population C

2400 360 .15 .75 .18 48 .66 .20 59 .68 .27 106
1200 360 .30 .75 .14 29 .62 .16 38 .66 .22 71
880 260 .30 .76 .18 35 .61 .18 35 .68 .26 71
350 160 .46 .79 .20 27 .67 .24 38 .71 .30 59

1200 180 .15 .77 .25 46 .64 .27 54 NA NA NA
500 80 .16 .76 .37 45 .67 .39 50 NA NA NA
300 50 .17 .78 .48 47 .60 .50 51 NA NA NA

NA - not available_

These are estimated from 1000 independent samples for each population and for

each sample size. As expected, for a given population, and with some sampling

variability, the correlations are essentially constant over the various sample sizes,

whereas the coefficients of variation of s_ decrease approximately as the square root

:_f the Federal subsample size n' increases.
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Note 1: Table C-1 also shows for each illustrative test population and

sample size some values labeled _. These values provide another
indicator of how much larger the variance of the variance estimates are
than would be expected in estimating a mean from a simple random
sample drawn from a normal population. Thus, for a simple random
sample of n' drawn with replacement (from any distribution of a
variable X), the relvariance of the sample estimate of the variance of
the mean is approximately I

2

02

'- [3-1
2 "' _

,_, n'

where 02 is the variance of the distribution,

S -- . )22 ,__.,(xi _ /(n'-1)n'x

is the estimated variance of the sample mean, E, for a simple random
sample of n' (drawn from any distribution), and

= Y'_(xi _ 2)4/n0 4.

For a normal distribution, 13has the value 3, but may have considerably
larger (or smaller) values for various non-normal distributions. Also,

in general, the relvariance of s_- is approximately one-fourth of the
22 2

relvariance of s_. If we substitute _ for [3 and 40 = o 2 in the above
X S_r 5_

X

equation we obtain

lHansen, M.H., Hurwitz, WANT.,and Madow, W.G. (1953), Sample Survey Methods and Theory,Vol. I,
Chapter 10, (New York: John Wiley & Sons). Theory for samples drawn with replacement provides a
simple approximation for samples drawn without replacement provided the sampling fraction is
small.
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= 4n'V_ + I .

We have found it convenient, in Appendix E, to use these values of
in obtaining rough approximations to the variance of state estimates of

2

s_.

For AFDC-QC, a consequence of the large coefficient of variation of s_

and of the positive correlation of _ and s_ is that the probability of the left tail (i.e.,

the probability that the lower confidence bound is above the value being estimated)

is considerably less than the nominal probability; the probability of the right tail is

considerably greater than the nominal probability. The technical note attached to

this Appendix shows the expected frequency below, above, and covered by 95 percent
A

and 90 percent nominal confidence intervals for the case in which both R and s_ are

normally distributed and are positively correlated, for various values of the

coefficient of variation of s_ and of the correlation of the two variables.

Figures C-ZA to C-2D are scatter diagrams showing the relationship
^

between the values of R and s_ for the 1000 samples drawn at each of four sample

sizes for Population A. That the correla: m between the variables is positive is

clear. It is also quite clear that the joint distribution is reasonably close to normal.

The ellipses in the diagram are such as to enclose a specified proportion of the

p nts if the joint distribution were exactly normal. The inner ellipse would

include 50 percent, the next would include 90 percent, the third would include

95 percent, and the outer ellipse would include 99 percent of the points. For the 1000

actual samples, the results were as follows:

Sarnp-: size

t
Contour 2400/360 1200/360 800/260 350/160

.50 491 506 495 508
.90 901 902 904 898
.95 957 950 951 950
.99 990 993 992 983
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Thus, the observed frequencies approximate, reasonably closely, the proportions

that are expected for the bivariate normal distribution. However, the moderate

skewness of the marginal distribution of 1_and s_ is evident; in each case, there are

more points in the right hand tail of the marginal distribution than in the left hand
tail.

Tables C-2A, C-2B, and C-2C, which are based on 1000 independent

samples drawn for Populations A, B, and C, respectively, show summary statistics of

the current AFDC sample design. They also show some summary measures for

specific confidence bounds and for the coverage of nominal confidence intervals

based on the same 1000 samples.

The panel headed "CONFIDENCE BOUNDS" gives, for example, the
A A

value of R such that 2.5 percent of the estimates R fall below it. This value was

estimated from the 1000 independent samples drawn from the specified population,

using the state and Federal sample sizes specified in the column headings of the

table. The 5 percent, 95 percent, and 97.5 percent points were similarly estimated

from the same samples.

The next panel, headed "NOMINAL CONFIDENCE BOUNDS," gives

the estimated means and variances of the bounds, the bounds being computed by

the current AFDC procedure. The line labeled "Coverage" gives the estimated

probability that the specified tail covers the true value, R. For example, for

Population A with the sample size 2400/360, the probability that the nominal

2.5 percent point is greater than R is estimated to be 1.1 percent rather than the

nominal 2.5 percent. Similarly, the probability that the nominal 97.5 percent point

is less than R is estimated to be 5.3 percent rather than the nominal 2.5 percent.

Consequently, the coverage of the corresponding 95 percent confidence interval is

estimated to be 93.6 percent (i.e., 100 - 1.1 - 5.3) rather than the nominal 95 percent.

The panel of the tables that is headed "NOMINAL CONFIDENCE

BOUNDS, MINIMLrM rho" gives the results of a procedure we have considered (see

Chapter 3 of this report and Appendix D) to reduce the effect of unusually low

values of the estimated correlation, _, between the state and Federal findings for the
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same case. This may happen because of sampling variation. It could also happen if

a state, inadvertently or not, does a poor job of evaluation in its QC operation. The

procedure consists of replacing the estimated correlation by a constant value
whenever the estimated correlation is less than that constant value. The constant

value used in these computations was .8. The tables show that this has only a

minor or negligible effect on the coverage properties of the resulting confidence
intervals.

Table C-3 summarizes the coverage of the nominal 95 percent and

90 percent confidence intervals for the three populations and various sample sizes.

These results are reasonably dose to expectations for samples large
^

enough that both R and s_ are normally distributed, as shown in the Technical

Note. They also conform to the general statement made above about the effect of

the coefficient of variation of s_ and the correlation of R and s_. As seen from

Table C-3, the coverage of the 95 percent and 90 percent confidence intervals is

generally somewhat less than the nominal confidence coefficient, but reasonably

close, especially for the larger sample sizes. They may reasonably be regarded as

providing acceptable approximations to the nominal probabilities of 95 percent and
^

90 percent, and therefore can serve as useful measures of the precision of R as an
estimate of R.

We note from Table C-3 that, for the variance estimator that imposes a

minimum value of p, the coverage probabilities are essentially the same as for the

variance estimator that uses the estimated p, although slightly farther from the

nominal probabilities.

One way of circumventing or reducing the effect of the skewness of the

distribution of R is to compute confidence intervals on a transformation of _ whose

distribution is more nearly symmetrical. If a transformation of _ say u=f(_), is

normally distributed, and if an unbiased or consistent estimate of the standard error

of u is available, one might have confidence bounds for the expected value of u

whose probabilities are more nearly the nominal confidence levels. Those bounds

could then be transformed by the inverse transformation, say g(u), to yield
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The confidence interval fer the mathematical expectation of R* at a specified

confidence level is computed as R* + kSR,, where the multiplier k is appropriate to

the confidence level for a normal distribution. Denote

4.

lq = R*- ksg.

lb

L,2 = R*+kSR,

and let

l,

L1 = exp (Ll)

L2 = exp (1_2).

Then L1 and L2 are taken to be the lower and upper bounds,

respectively, of the confidence interval for the payment error rate, R.

For each of the four sample sizes the procedure was repeated 400 times.

Table C-4 shows the estimated coverage probabilities of the intervals corresponding

to the nominal 2.5 percent voint. 5 percent point, 95 percent point, and 97.5 percent

poin:, as well as the estimated coverage probability corresponding to the nominal

90 percent confidence interval. It also shows, for comparison, the coverage of

conf' _ence intervals comvuted by the conventional procedure described at the

beginning of this Appendix.

Later, in order to obtain additional information on the validity of the

logarithmic transformation, the procedure was repeated an additional 1500 times for

Population A using the sample sizes n=2400, n'=360, and an additional 2000 times

using the sample sizes n=350, n'=160. The co--.bined results of the two sets of

simulations are summarized in Table 2-6 of Section 2.4 of _e report.
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Table C-2A. Population A: Summary statistics

STATISTIC 2400/"JC_ 1200/II60 000/260 ;350/!60
1_.07297

Hem la' 0.0730_r/ 0.072446 0.0727000 0.072g0I
Vrimce alrI_ 6.27_-05 7.044E-05 1.073E-04 2_-04
Hem esUrmtedvrtmce or IT 6.44_-05 7.gogE-01 I. I0(_-04 2.191E-04
Vrimce of e_Urnetedvrimce of R' 4.937E-10 5.456E-10 !.5,3gE-09 7.606E-09
MereesUmltadstamdlrderror or R' 0.007900 0.0000_ 0.010327 0.014513
Vri,nce ot estimabKIstJed.rd error or R' 1.916E-06 1.600E-06 ;5.311E-06 0.542E-06

CONFI_ BOUNOS
2.5X point O.OeoOSgO 0.0S_HF_ 0.0_20.T2 O.O_.A..,T2

5.0_1paint. 0.06093! 0.058(06 0.055404 0.048894
95.0g point 0.0_g44 0.017007 0.0g0412 0.00150g
97.5_1point 0.06_ lg O.OgO,!L_ 0.09469! 0.105241

NOHINALCONF_ BOUNOS
2._1 point Hem O.O_7'_T 0.0_110 0.0_2467 0.0444_

Vrimce 3.804E-05 4.621E-05 6.487E-06 1263E-04
Covtrege 0.011 0.001 0.0 I0 0.013

5.OXpoint Hem 0.060040 0.0_t_96 O.O_T20 0.049027
Vlrimce 4.102E-01 4.92gE-01 6.997E-4_ I ._3E-04

Cov_lge 0.024 0.020 0.026 0.031

cJS.0Xpoint Hun 0.0_D067 0.017000 O.O_JGg7 0 096775
V.ri_ce 9.'1_-05 1.00_-04 1.625E-..04 3.65_-04

Coverage 0.004 0.097 O.IO0 O.!02

97,5_1point. Hem 0.01O_a 0.019762 O.Og2gO! 0.I01_017
Vr_mce 1.023E-04 1.06gE-04 1.75IE-04 3.973E-04
Cov_r_e 0.05_ 0.01g 0.0_ O.On

NOMINALCONIr!!_NC_BOUNDS. _ the
2.SI point I_m 0.0679_ 0.05_[8g 0.0_2{_2 0._

Vrilece 4.0371E-_ 4.744E-0_ 5.757E-01 1201E-04
0.013 O.OOe 0.014 0.016

5.0_1point Hem 0.060,164 0.0_ 130 0.056077 0.049442
Variance 4,,T22E-_ _.043E--_ 7.26-__-._ 1.40_E-04

Cover_ 0.0,_ 0.030 0.0,32 O.OM

95.0_[point _ 0.01575! 0.016762 O.O_3atI 0.096360
Vrlmce 9.01_-01 9.774E-05 ! .,._ 3.,_

0.0_1 O.Og_ 0.100 0.107

g7.51[point Hem 0.018182 0.019503 0.092526 0.100852
V.r_m 9.6._2E-01 1.0,50E-04 I _73E-04 3.ag.SE-04
Cov_es_ 0.0S3 O.OeO 0.067 0075

Note: Based on 1000 trials, for the regression estimate.
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Table C-2B. Population B: Summary statistics

STATISTIC 2400/360 1200/560 aaO/2_O _0/lEK)
R=.OTg44gl

Hem R' 0.07892_ 0.0790_ 0.07_15 0.079299
Vm'imceof R' 5.413E-06 6_IgE-K_ g.470E-05 2.4_E-04
Hem esUmatedvarianceor R' S270E-O'J 02161E-O_ ! .! IgE-04 2_10E-04 .
V_iam:e ot estimated varianceeSr R' 4.3_)1E-I0 6.840E-I0 1.7IQE.-09 1.3SIE'-Oe
r'leln estimatedstJ_rd ervQrof R' 0.007130 0.Q0459_ 0.010402 0.015442
Varianceor estimated standarderror of la' 1.g.451E-06 1.944E-06 3.6lgE-06 1.321E-.05

CONFIDENCEBOU_
2.§_ point 0.064g04 0.06.,.5426 0.060 !74 0.0'o0066
5.011point 0.066957 0.065943 0.062379 0.054757

9_.011point O.090g_ 0.094013 0.097_ I 0.100100
97.511point 0.094786 O.OgSO4g 0.100251 0.114120

NOHINALCONFi_
2.5_1point rlem O.06494g 0.061SO7 0.05_120 0.04g035

Variance 3.,506E_ 4.662E-05 6.630E-05 1.48'2E-04
Ceverage 0.011 0.012 0.000 0.017

5.011point I_an 0.0671_ 0.064527 0.06170_ 0.05_97
Vrimc. 3.711E.-_ 4.86_-05 6.89gE-05 1.56_-.04
Coverage 0.032 0.030 0.033 0.036

g"3.011point Hun 0 ._ 0.0<J371_ O.Og'J926 O.104702
Vammce 8.1671E-05 9 2_K_-05 ! .40_ 4.0161E--04
Cov_ O.Og3 0.072 0.093 0096

97.511point r',em 0.092099 0.096604 0.0992_ O.lOg_6
Vrimce 8.815E-05 9.869E-.05 ! .,'50gE-04 4.4(X)E-04
Coverage 0.067 0.042 0.0_ 0.062

NOtllNALCONFID_ BOUleS. _ rrm
2511point rlem 0.064957 0.061515 0.0E_1461 O.04gIOg

Variance 3504E-0_ 4,O6OE...O_ 6.6,54E-05 1.4aeE-o4
Cev_rege 0.011 0.012 0.009 0.017

011point HNn 0067202 0.064354 0.06173,3 0.05596I
Varimce 3.711E..._5 4.065E_ 6.g22_-0'"_ 1.570E-04
C_ 0.032 0.030 0.033 0056

9'_011point _ 00906,47 009,3776 0.095896 O.104658
Variance §, 16ZE-O_ g221E.-O_ I .o-9_--04 4.00_-04
Caverege 0.0_ 0.072 O.Og3 0.096

97511point I*lem O.Og2_l 0.0965_ 0.099170 0.109490
Vrla_.e 8_O_E-O_ 9 _E-I_ I E_IIE-04 4,3_-0al
Cern-age 0.067 0.042 0,055 0.062

Note: Based on 1000 trials, for the regression estimate.

C-10



Wtstat, Inc.

Table C-2C. Population C: Summary statistics

STATISTIC 24100/350 ! 200/360 000/260 3_0/160
11_.066230

Mean la' 0.0_ 17 0.066014 0.06,_643 0.066066
Vri.nco of R' 7.60_-4)5 8.77_-05 1.19 !E-04 2.637E-04
Meanestimated variance of 17 7.g64E-O"J 9.71_-05 1.331E-04 2.631E-04
Variance of estimated v,eimce of 17 1.g4_H)g 2.00_-Og 5.154E--Og 2.738[-(_
Meanestimated sL_ error orR' 0.00_1§ 0.009_ 0.011163 0.01:_17
Variance of estimated standrd error of R_ 5.147E-06 4.561E-06 8.373E-06 2221E-(_5

CONFIOENCEBOUNOS
2.5% point 0.04_ 0.047_7 0.044_4 0.0376 Ig
5.0% point 0.052eu07 0.050076 0.047661 0.041242

g'J.0% point 0.061174 0.0_2170 0.0_ 0.0946,51
97.5% point 0.0_ 0.085426 0.088494 0.101151

NOMINALCONFIDENCEB(XJNOS

2.5% point Mean 0.04g031 0.047000 0.043764 0.03_3
V.m.nce 4.3KX_-05 5.446E-05 6.838E-05 1.373E-04
Coverage 0.003 0.011 O.(X)9 0.007

5.0% point Mere 0.0_1745 0.0_012g 0.047281 0.040_ I
Veeimce 4.5_-05 5.745E-05 72.18E-05 1.462[-04

Coverege 0.014 0.021 0.020 0.020

g5.0% point Mere O.00(X)gO 0.0018<J0 0.01_ o.og I_g I
Vrimce 1.35glE--04 1.428E-04 2.113[-04 5.015E-04
Coverage 0.093 0.103 0.113 0.120

g7_% point Mere O.Oe21D04 0.004940 0.0a7_22 O.Og647<J
Variance I _4)71E-04 ! .562[-04 2,_41E-04 5.60_E-04
Cever.ge 0.060 O.O00 0.064 0.007

NOMINALCONFIDENCEBOUNOS. _ I_O
2.5% point Mere O.04g_ 0.04774g 0.044648 0.036712

Vartmce 4.401E-O'J 5.574E--O'J 6 .go61E-O_ 1.3_7E-04
Coverage 0.010 0.011 0.01 ! 0.009

5.0% point Mere 0.062473 0.050685 0._ 0.041429
Variance 4.810[-0_ 5.9'24E-0_ 7.407E-05 1.47_-04

Coverage 0.029 o.o2a o.o26 o.o3o

g5.0 %point _ 0.079361 0.061343 0.063264 0.090703
Verlmc_ ! 220_-04 I .T_-_ I .g"J'71E-04 4.740E-04

Coverage O.Og_ 0.104 0.116 0.124

97 511paint _ 0.0_ I g3_ 0.064278 0.086638 o.og_
verlmce 1._2_-04 ! .44_-04 2.140_-04 5 260_-04
co,m"_g. 0.06;2 0.064 0.0_8 O.OgO

Note: Based on 1000 trials, for the regression estimate.
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Table C-3. Estimated coverage of 95 percent and 90 percent nominal confidence intervals for three test

populations, ba>ed on alternative regression estimators using the estimated p and a

minirnum p of .8

Population A Population B Population C

State Federal Estimated Minimum Estimated 'Minimum Estimated Minimum

n n' p p p p p p

95 percent nominal
confidence interval

2400 360 0.936 0.934 0.922 0,922 t.937 0.928
1200 360 0.935 0.932 0.946 0.946 0,909 0.905

800 260 0.924 0.919 0.937 0.936 0.907 0.901
350 160 0.912 0.909 0.921 0.921 0.906 0.901

90 percent nominal
confidence interval

2400 360 0.892 0,S86 0.875 0.875 0.893 &873
1200 360 0.875 0,872 0.898 0.898 0.876 0.868

800 260 0.872 0.868 0.874 0.874 0.867 0,858
350 160 0.867 0.859 0.868 0.868 0.852 0.846

Note: Based on 1000 independent replicate samples from each population for each sample size. The same

replicate was used with the estimated p and the minimum p.
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part of the disallowance would be accumulated. The computation of the estimated

standard error would reflect appropriately whatever waiver was allowed.

In Table 3-9, we illustrate computation of disallowances for each state

by Rule D for the four fiscal years 1981 through 1984, the years for which

information is currently available. Since waivers are available only for 1981, we

have made the computations without waivers.

We note that, because of some exceedingly high target rates for some

states for 1981 (and to some extent for 1982, also) the results presented in Table 3-9

provide a quite distorted picture from the application of Rule D. For example,

Illinois has a target rate for 1981 of 12.7 percent. Its observed rate of 8.3 percent is still

a high error rate. If Rule D were to be applied to Illinois beginning in 1981, the state

would receive an initial book credit of 17.5 million dollars, to be credited against

future disallowances. It seems highly undesirable to initiate Rule D for such a state,

and more appropriate to initiate the rule for a state with a negative disallowance

only if the target for the state is below a specified level, for example, below 8 percent.

Of course, the setting of this specific target level is a policy determination. If the

specified target level for 1981 were set at 8 percent, then, of the 17 states with 1981

target rates over 8 percent, only one (Maryland) with a 1981 target rate of more than

8 percent has a 1981 observed overpayment rate above its target rate.

In Table 3-6, we provide a summary of the aggregate results from the

application of Rule D for two levels of the allowable 1981 target rate (8 percent and

10 percent) for the initiation of Rule D, assuming that the application of Rule D

begins in 1981. Excluded from these respective summaries are the 16 states with

1981 target levels above 8 percent for which the computed disallowances are

negative, and the 6 states with 1981 target levels above 10 percent for which the

computed disallowances are negative (see Table 3-9).
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Figure C-1. Distribution of estimated standard error
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Figure C-2A. Scatterplot for Population A - sample size 1
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Figure C-2B. Sc_tterplot for Population A sample size 2
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Figure C-2C. ScatterpIot for Population A - sample size 3
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Figure C-2D. ,Scatterpiot for Population A - sample size 4
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TECHNICAL NOTE FOR APPENDIX C:

A Note on Confidence Intervals

If a simple random sample of sizen is drawn from a normal

distribution, the mean of the population may be estimated by

x = _,xi/n

and the variance of x by

2

s_ - Z(x i- x)2/(n-1) n.
x

If X denotes the population mean, the statistic (x-X)/s x has the Student t

distribution so that a confidence interval with confidence coefficient ct is given by

x 4-tex)s

where t(cz) is taken from the Student t distribution or from the normal distribution

if n is large (say n>30).

Even when the conditions given above are not satisfied, the confidence

interval is often estimated in the same way, on the assumption that since the

distribution of x is approximately normal for a large sample, the procedure ensures

that the probability that the interval will cover the population mean X is

approximately cc It is often assumed that the probability that ,X is below (or above)

the interval is approximately (1-c0/2. The fact, however, is that for samples drawn

from skewed distributions the statistics x and s_ are correlated and consequently the

probability that X is below the interval is not necessarily equal to the probability that

is above the interval. Actually, in sampling from skewed distributions, the joint

distribution of x and s_ may approach normality reasonably closely for samples of

moderate size, but _ and s_ remain correlated, and the correlation remains about
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the same as sample size increases. Also, the variance of s_ may be much greater

than if sampling from a normal distribution. We evaluate the probabilities

associated with 90 percent and 95 percent nominal confidence intervals for this case,

i.e., _ and s_ are jointly normally distributed but correlated _. d with various

possible values of the coefficient of correlation de_?ending on the skewness of the

distribution from which the sample was drawn.

Suppose that a variable u has the normal distribution with mean p and

v_'-'ance cs2, and that a variable s as a normal distribution with mean a _.nd

va:_ance z2, and that the correlation ot u and s is p. Let k be a constant and define

the upper and lower bounds of a confidence interj.'al by

= u+ks.

The variable _ is normally distributed, with

E(_) = p +ko

Var(_) = Var(u) + k2Var(s) ± 2k Cov(u,s)

= V2, say.

We wish to evaiuate

Prob = CV/2xr 2}d×.
d

Let

y = (x-p_ka)/V

so that

x = Vy+p_ka

dx = V dy
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and

_ob(___)= (_[-_ f _,,/v _ (_y2/2)dy.

We may define

z2 V2 ·
so that we may write

mob(___)= ('_ f _/, exp(.y2/2)dy'.

Note that 'r/o is the coefficient of variation of s.

The probability that the lower bound of the confidence interval is

greater than g is thus

1- (._1 fk/z exp (-y2/2)dy

and the probability that the upper bound is less than Ix is

(_"_-1 f-k/z exp (-y2/2)dy.

We may call these the coverage probabilities of the lower and upper

"tails" of the confidence interval, respectively.

In Table C-5 we show the values of these probabilities for the nominal

95 percent confidence interval (in which case one takes k = 1.96) and for the nominal

90 percent confidence interval (in which case one takes k = 1.645). The

computations are shown for various combinations of p (in the column headed
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"Rho") and z/o (in the column headed "CV(s)", the coefficient of variation of the

estimated standard error). The coverage probability of the confidence interval itself

is simply the complement of the sum of the coverage probabilities of the tails. In _
each of the columns headed "Bias" we show the difference between the nominal

probability and the actual probability. Note that this follows the statistical

convention of showing the estimate (taken to be the nominal probability) minus the

value being estimated (taken to be the true probability of the tail).

To illustrate, consider a case in which p = .7 and CV(s)= .1. For a

nominal 95 percent confidence interval, the probability that the value being

estimated is in the lower tail (i.e., the lower bound is greater than the true value) is

.0125 and the probability that the value being estimated is in the upper tail (i.e., the

upper bound is less than the true value) is .0436. Since the nominal probabilities are

both .025, the biases are, respectively, .025 -.0125 = .012.5 and .02.5- .0436 = -.0186.

The relevance of this discussion to the AFDC-QC sample estimates is
A

that the estimated error rate R and the estimated standard error Sl_ are

approximately jointly normally distributed, but with positive correlations (these

positive correlations are essentially constant for all sample sizes from a given
A

population). Thus, R and s_ are (approximately) examples of the variables u and s

in the above analysis. The coverage probabilities read from Table C-5 are reasonably

consistent with those estimated from simulated sampling from the test populations

as displayed in Table 2-4, for the estimated values of p and the coefficient of

variation Vs_ given in Table C-1. The tail probabilities of the tails of the nominal

confidence intervals, as given by simulated sampling from the test populations with

various sample sizes, are compared in Table C-6.

c-22



Table C-5. Bias of nominal coverage probabilities, for samples from a skewed distribution*

IRholCVsl9   n,iden nc as  Co de eerv lsIl. owL.r tail i Interval i Upper tail Lower ta. I ,.,erva,I UPper tail
Prob.I BiasI Prob.I BiasI Prob.I BiasI Prob.I BiasI Prob.I BiasI Prob.I Bias

0.9 05 .(ll)O .0250 .8451 .1049 .1549 -.1299 .0001 .0499 .8226 .0774 .1773 -.1273

0.9 0.4 .0000 .0250 .8701 .0799 .1299 -.1049 .0005 .0495 .8449 .0551 .1546 -.1046

0.9 0.3 .0001 .0249 .8968 .0532 .1031 -.0781 .0029 .0471 .8672 .0328 .1299 -.0799

0.9 0.2 .0017 .0233 .9230 .0270 .0753 -.0503 .0110 .0390 .8854 .0146 .1036 -.0536

0.9 0.1 .0090 .0160 .9428 .0072 .0483 -.0233 .0272 .0228 .8965 .0035 .0763 -.0263

0.9 0.08 .0115 .0135 .9453 .0047 .0432-.0182 .0313 .0187 .8978 .0022 .0709-.0209

0.9 0.06 .0143 .0107 .9474 .0026 .0383-.0133 .0357 .0143 .8988 .0012 .0656-.0156

0.9 0.04 .0175 .0075 .9488 .0012 .0336-.0086 .0403 .0097 .8995 .0005 .0603-.0103

0.9 0.02 .0211 .0039 .9497 .0003 .0292-.0042 .0450 .0050 .8999 .0001 .0551-.0051

0.8 0.5 .0009 .0241 .8,507 .0993 .1484 -.1234 .0031 .0469 .8261 .0739 .1708 -.1208

0.8 0.4 .0005 .0245 .8758 .0742 .1236 -.0986 .0038 .0462 .8478 .0522 .1484 -.0984

0.8 0.3 .0010 .0240 .9015 .0485 .0975 -.0725 .0073 .0427 .8684 .0316 .1243 -.0743

0.8 0.2 .0035 .0215 .9256 .0244 .0710 -.0460 .0155 .0345 .8854 .0146 .0991 -.0491

0.8 0.1 .0107 .0143 .9434 .0066 .0459 -.0209 .0299 .0201 .8963 .0037 .0738 -.0238

N 0.8 0.08 .0129 .0121 .9457 .0043 .0413 -.0163 .0335 .0165 .8976 .0024 .0688 -.0188
SG 0.8 0.06 .0155 .0095 .9476 .0024 .0369 -.0119 .0373 .0127 .8987 .0013 .0640 -.0140_o

0.8 0.04 .0184 .0066 .9489 .0011 .0327 -.0077 .0414 .0086 .8994 .0006 .0592 -.0092

0.8 0.02 .0215 .0035 .9497 .0003 .0287 -.0037 .0456 .0044 .8999 .0001 .0545 -.0045

0.7 0.5 .0053 .0197 .8532 .0968 .1415 -.1165 .0116 .0384 .8244 .0756 .1640 -.1140

0.7 0.4 .0032 .0218 .8798 .0702 .1170 -.0920 .0107 .0393 .8474 .0526 .1418 -.0918

0.7 0.3 .0033 .0217 .9050 .0450 .0916 -.0666 .0135 .0365 .8681 .0319 .1185 -.0685

0.7 0.2 .0059 .0191 .9276 .0224 .0665 -.0415 .0205 .0295 .8850 .0150 .0945 -.0445

0.7 0.1 .0125 .0125 .9440 .0060 .0436 -.0186 .0327 .0173 .8961 .0039 .0712 -.0212

0.7 0.08 .0145 .0105 .9461 .0039 .0394 -.0144 .0358 .0142 .8975 .0025 .0667 -.0167

0.7 0.06 .0167 .0083 .9478 .0022 .0355 -.0105 .0390 .0110 .8986 .0014 .0623 -.0123

0.7 0.04 .0192 .0058 .9490 .0010 .0318 -.0068 .0425 .0075 .8994 .0006 .0581 -.0081

0.7 0.02 .0220 .0030 .9498 .0002 .0283 -.0033 .0462 .0038 .8999 .0001 .0540 -.0040

"(Based on a model in which x and s_have a bivariate normal distribution with correlation p.)



Table C-5. Bias of normnal coverage probabilities, for samples from a skewed distribution* (continued)

Rho J CV(s) I 95% Confidence Intervals ] 90% Confidence Intervals
Lower tail I Interval I Uppertail I Lower tail [ interval [ Uppertail

Prob i Bias I Prob. I Bias I Prob. [ Bias I Prob. i Bias I Prob. I Bias I Prob. I Bias

0.6 0.5 .0134 .0116 .8523 .0977 .1342 -.1092 .0238 .0262 .8195 .0805 .1567 -.1067

0.6 0.4 .0085 .0165 .8814 .0686 .1101 -.0851 .0201 .0299 .8449 .0551 .1349 -.0849

0.6 0.3 .0071 .0179 .9073 .0427 .0856 -.0606 .0208 .0292 .8669 .0331 .1124 -.0624

0.6 0.2 .0089 .0161 .9291 .0209 .0620 -.0370 .0257 .0243 .8844 .0156 .0898 -.0398

0.6 0.1 .0144 .0106 .9444 .0056 .0412 -.0162 .0355 .0145 .8960 .0040 .0686 -.0186

0.6 0.138 .0161 .0089 .9464 .0036 .0376-.0126 .0380 .0120 .8974 .0026 .0646-.0146

0.6 0.06 .0179 .0071 .9480 .0020 .0341-.0091 .0407 .0093 .8986 .0014 .0607-.0107

0.6 0.04 .0201 .0049 .9491 .0009 .0308-.0058 .0436 .0064 .8994 .0006 .0570-.0070

0.6 0.02 .0224 .0026 .9498 .0002 .0278-.0028 .0467 .0033 .8999 .0001 .0534-.0034

0.5 0.5 .0239 .0011 .8496 .1004 .1265 -.1015 .0375 .0125 .8134 .0866 .1490 -.0990

0.5 0.4 .0158 .0092 .8814 .0686 .1028 -.0778 .0308 .0192 .8415 .0585 .1276 -.0776

0.5 0.3 .0122 .0128 .9085 .0415 .0793 -.0543 .0288 .0212 .8653 .0347 .1060 -.0560

0.5 0.2 .0124 .0126 .9302 .0198 .0575 -.0325 .0312 .0188 .8838 .0162 .0850 =0350

N 0,5 0.1 .0164 .0086 .9448 .0052 .0389 -.0139 .0383 .0117 .89,58 .0042 .0659 -.0159,b
'_ 0,5 0.08 .0177 .0073 .9466 .0034 .0357 -.0107 .0402 .0098 .8973 .0027 .0624 -.0124

0.5 0.06 .0192 .0058 .9481 .0019 .0327 -.0077 .0424 .0076 .8985 .0015 .0591 -.0091

0.5 0.04 .0209 .0041 .9492 .0008 .0299 -.0049 .0448 .0052 .8994 .0006 .0559 -.0059

0.5 0.02 .0229 .0021 .9498 .0002 .0273 -.0023 .0473 .0027 .8999 .0001 .0529 -.0029

0.4 0.5 .0354 -.0104 .8462 .1038 .1184 -.0934 .0516 -.0016 .8076 .0924 .1408 -.0908

0.4 0.4 .0243 .0007 .8805 .0695 .0953 -.0703 .0420 .0080 .8380 .0620 .1200 -.0700

0.4 0.3 .0181 .0069 .9090 .0410 .0729 -.0479 .0371 .0129 .8636 .0364 .0994 -.0494

0.4 0.2 .0162 .0088 .9309 .0191 .0528 -.0278 .0368 .0132 .8832 .0168 .0801 -.0301

0.4 0.1 .0184 .0066 .9451 .0049 .0365 -.0115 .0411 .0089 .8957 .0043 .0632 -.0132

0.4 0.08 .0194 .0056 .9468 .0032 .0338 -.0088 .0425 .0075 .8972 .0028 .0603 -.0103

0.4 0.06 .0205 .0045 .9482 .0018 .0313 -.0063 .0441 .0059 .8985 .0015 .0574 -.0074

0.4 0.04 .0218 .0032 .9492 .0008 .0290 -.0040 .0459 .0041 .8993 .0007 .0548 -.0048

0.4 0.02 .0233 .0017 .9498 .0002 .0269 -.0019 .0478 .0022 .8999 .0001 .0523 -.0023

*(Based on a model in which x and sx have a bivariate normal distribution with correlation p.)



Table C-5. Bias of nominal coverage probabilities, for samples from a skewed distribution* (continued)

Rho CV(s)[ [ _ 95% Confidence Intervals 90% Confidence IntervalsI Low_r,_,I ! Uppertail Lowerla.I Interval I UppertailI I Prob.I B,asI Prob.I BiasI Prob.I Bias Prob.I BiasI Prob.I _as I Prob.I Bias
0.3 0.5 .o472 -.0222 .8431 .1069 .1098 -.0848 .0652 -.0152 .8027 .0973 .1321 -.0821

0.3 0.4 .0335 -.0085 .8792 .0708 .0873 -.0623 .0532 -.0032 .8349 .0651 .1118 -.0618

0.3 0.3 .0246 .0004 .9091 .0409 .0663 -.0413 .0455 .0045 .8620 .0380 .0925 -.0425

0.3 0.2 .0204 .0046 .9314 .0186 .0481 -.0231 .0424 .0076 .8826 .0174 .0750 -.0250

0.3 0.1 .0205 .0045 .9453 .0047 .0342 -.0092 .0439 .0061 .8956 .0044 .0605 -.0105

0.3 0.08 .0211 .0039 .9470 .0030 .0319 -.0069 .0447 .0053 .8972 .0028 .0581 -.0081

0.3 0.06 .0218 .0032 .9483 .0017 .0299 -.0049 .0458 .0042 .8984 .0016 .0558 -.0058

0.3 0.04 .0227 .0023 .9492 .0008 .0281 -.0031 .0470 .0030 .8993 .0007 .0537 -.0037

0.3 0.02 .0237 .0013 .9498 .0002 .0264 -.0014 .0484 .0016 .8999 .0001 .0517 -.0017

t'3
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*(Based on a model in which x and s- have a bivariate normal distribution with correlation p.)X



Appendix ¢

Table C-6. Tail coverages as estimated by simulation and as given by the normal model

95% Confidence Interval 90% Confidence Interval

Lower tail Upper tail Lower tail Upper tail

Sample size Rho CV(s) Estimated Modeled Estimated Modeled Estimated Modeled Estimated Modeled

Population A
2400/2_ '_ 0.75 0.18 0.011 0.006 _ 0.053 0.064 0.024 0.020 0,084 0.092

1200/.3_; 0.75 0.14 0.006 0.008 0.059 0.054 0.028 0.025 0.097 0.0,_2

880/260 0.76 0.18 0.010 0.005 0.066 0.064 0.028 0.020 0,100 0.092
350/160 0.79 0.20 0.013 0.004 0.075 0.071 0.031 0.016 0.102 0.099

Population E
2400/360 0.66 0.20 0.011 0.007 0.067 0.065 0.032 0.023 0.093 0.093

1200/350 0.62 0.16 0.012 0.010 0.042 0.054 0.030 0.028 0.072 0.082

880/260 0.61 0.18 0.008 0.009 0.055 0.058 0.033 0.027 0.093 0.086

350/160 0.67 0.24 0.017 0.005 0.062 0.075 0.036 0.019 0.096 0.103

Population C
2400/360 0.68 0.27 0.003 0.004 0.060 0.083 0.014 0.016 0.093 0.110

1200/350 0.66 0.22 0.011 0.006 0.080 0.070 0.021 0.021 0.103 0.097

880/260 0.68 0.26 0.009 0.005 0.084 0.080 0.020 0.017 0.113 0.108
350/160 0.71 0.30 0.007 0.003 0.087 0.092 0.028 0.013 0,120 0.119

i
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APPENDIX D

RELIABILITY OF LOWER CONFIDENCE BOUNDS

D.1 Variances of Lower Confidence Bounds and Point Estimates Compared

The estimated variances and standard errors of the regression estimate

of R and of the lower bound of the confidence interval, based on 1000 independent

replicates sampled from each test population, for each of several sample sizes, are

shown in Table D-1. In this analysis, the lower confidence bound, L, has been
A

computed at the 95 (or 5) percent nominal confidence level, i.e., L = R- ts_ with

t = 1.645. From the table, it can be seen that the estimated variances of the lower

confidence bounds (s L) vary from about one-third to two-thirds as large as the

variances of the estimated payment error rates (s2_), depending on the state sample

size and the fraction in the Federal subsample. The standard errors of L vary from
A

about 60 to 80 percent of the standard error of R.

Table D-1. Variances and standard errors of 95 percent lower confidence bounds and of estimated
payment error rates, for regression estimator, for three test populations for seven
illustrative sample sizes

Sample size Population A Population B Population C

2 2 2 2 2 2
n n' n'/n st./_ SL/S_ SL/S_ SL/S_ SL/S_ SL/_

2400 360 .15 .65 .81 .69 .83 .60 .77
1200 360 .30 .70 .84 .75 .86 .65 .81
880 260 .30 .65 .81 .73 .85 .61 .78
350 160 .46 .60 .78 .64 .80 .55 .74

1200 180 .15 .40 .64 n/a n/a n/a n/a
500 80 .16 .36 .60 n/a n/a n/a n/a
300 50 .17 .32 .56 n/a n/a n/a n/a
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These results are both surprising and interesting. They are far different

from what would occur in estimating a mean and computing confidence intervals

from a simple random sample from approximately normal distributions. They

would also have desirable implications for AFDC if 1o_,,,? confidence bounds were

to be used in deteiiidning disallowances. The relatively smaller variances of L occur
^ ^

because R and s_ are r ,itively correlated. Consequently, if R is high, then s_ tends

also to be big? and the computed lower bound is, on the average, lower than it
^

would be if the standard error of R were known and used to compute it, and vice

vet .. On the other h i, in s,_ _,pling from a normal distribution, the estimated
mean and its estimatect standard error are uncorrelated and there is no such

compensation in the computed lower conficence bound, and the variance of the

computed lower confidence bound would be larger than the variance of the mean.

The estimated correlations observed in the sets of 1000 replicates for

various sample sizes from the three test populations are summarized in Table C-1

in Appendix C, and are seen to be quite high (of the order of .6 to .8). They vary

trivially with sample size, and this variation apparently is due primarily to

sampling variability.

To provide additional insight, since the nominal 95 percent lower
confidence bound is

^

L = R- 1.645 sfi,

it follows that the variance of L is

2 2 2

ClL = C_ + (1.645) 2 CYs_ - 2(1645)P O_Os_

where p is the correlaUon of L and SR.
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2 ^

The first term in a L is the variance of R; the second term is the

contribution from the variance of the estimated Ss_, the standard error of R; and the

third term is determined by p, the correlation of _ and s_. Some estimates of a2 and

2
osi_ based on the 1000 replicates are given in Tables C-2A, B, and C, and are

summarized in Table C-1 in Appendix C. Estimates of p are also given in Table C-1.

The variance of the lower confidence bound for the regression estimator can be
2

obtained by making the appropriate substitutions in the above equation for o L. The

results agree closely with the values given in Table D-l, which were obtained by

computing the variance of L directly from the 1000 replicates.

The implication of these results, as stated earlier (Section 2.5.2), is that
A

the lower confidence bound computed by use of the estimated standard error of R

from the sample is a substantially more stable and better way to compute the lower
confidence bound than would be obtained if the unknown true value of the

standard error were in fact known and used in computing the lower confidence
limit.

D.2 Use of Minimum Correlation in Computing Lower Confidence Bound

to Control Possible Lower Quality of State QC

It has been recognized at OFA, and is a source of concern, that if a lower

confidence bound is used in computing disallowances, a state could achieve a

considerably lower average disallowance simply by doing a lower-quality QC job,

and thereby yielding a lower correlation between the Federal review results and the

state QC results. This effect can be seen by examining the role of r (the correlation)

in Equation (3), Chapter 1. While it may or may not be likely that this would occur

in practice, there is a concern that it might, since the higher the quality of the work

done on QC in a state, the higher the correlation, and, as a consequence, the higher

the lower confidence bound and the higher the disallowance.
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There is a simple solution to this potential problem. The procedure is

to identify those states for which r, the estimated correlation between the state and

Federal QC results, is less than rL, where r L is, perhaps, the 30th percentile of the

state estimates of r for the prior year; that is, rL is the value such that 30 percent of

the observed state correlations of state and Federal payment errors in the prior year

are below rL, and 70 percent are above. An acceptable variant of this procedure is to

substitute a constant value for rL tha. would approximate the 30 percent rule. The

constant can be chosen based on recent prior experience. We would expect that for

many or most states for which the estimated correlation is below rL, the low

correlation will occur primarily because of sampling variability. The procedure is to
A

substitute r L for r in Equation (3) of Chapter I in estimating the variance of R

whenever r is less than rL. The principal gain from this procedure is that it removes

or reduces any gain that could result if a state did poorer-quality QC work in order to

reduce disallowances. An additional minor advantage is that it slightly reduces the

variance of the lower confidence bounds, at the cost of a slight downward bias in the

variance estimate.

We illustrate the application of this procedure as follows. Suppose the

"30 percent" rule is adopted, and that rL = .80 is the 30th percentile of the state

correlations for the prior year. Suppose that for a particular state n'= 360 and

n = 2400, and the observed correlation is .50. This relatively low correlation might

arise either because the state QC reviewers have done poor work (whether

purposefully or not), or because of random variation, or some of both. The ratio of

the computed standard error of l_ with .50 substituted for r in Equation (3) to the

standard error if .80 is substituted is 1.31. Thus, the use of the standard error

computed with rL = .80 substituted for r will substantially raise the lower confidence

limit.

Table D-2 shows the distribution of the estimated state correlations for

each fiscal year from 1981 to 1984 for the 44 states that did not treat the QC samples as

stratified samples in making sample estimates in any of the four years. Figure D-1

shows the cumulative distribution of the correlations for each year for the same

44 states. Figures D-2A, D-2B, and D-2C show the cumulative distribution of the

estimated correlation, based on the 1000 independent samples from each of the Test
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Populations A, B, and C, respectively, for each sample size. It will be noted that in

each of these three figures the two distributions for which the Federal subsample

size n' is 360 are nearly indistinguishable.

Figures D-3A, D-3B, and D-3C illustrate for Test Populations A, B, and C

the reductions in variance that result from the application of the 30th percentile

rule where all correlations are estimated from samples of the same population.

Note that in these figures the curves based on the estimated and the minimum

correlations are almost indistinguishable. When they overlap, only one is shown.

We note that whether or not the rule of substituting rL for r is applied

in computing the standard error of _ for a state, the value of _ is based entirely on

the sample for the state, and the computation of _ is unaffected by the substitution

of rL for r. Also, while the use of the minimum correlation rule makes a substantial

difference in the variance estimates for individual states for which the estimated

correlation is low, it only moderately reduces the estimated variance over all

possible samples that could be drawn. This is dearly illustrated by Figures D-3A, D-

3B, and D-3C.

We note another important point in connection with the possible use

of lower confidence bounds for assessing disallowances. This is that the lower

confidence bound, and consequently the expected disallowance, would average

lower for a relatively small than for a relatively large size of QC sample. This could

create an incentive for a state with a relatively high error rate to use smaller QC

samples just to reduce the potential for disallowances, even though it would be

undesirable from the point of view of corrective action and other uses of the quality

control sample, as well as from the Federal goal of achieving an acceptable return

from disallowances. Consequently, it would be necessary, if a lower confidence

bound approach were adopted, to specify minimum sample sizes, and these minima

should not be so small as to unreasonably lower the expected lower confidence

bounds. Of course, relatively larger samples will also better serve the basic role for

which QC was created, i.e., providing guidance for improved AFDC design, and for

taking corrective action to improve administration. This issue of desired

(optimum) size of QC sample for computing disallowance is briefly considered in

Section 3.4 and in Appendix G.
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Table D-2. Distribution of states by the estimated correlation between state and Federal findings for
fiscal years 1981-1984, for 44 states

Ftsca] years
Estimated

correlation 1981 1982 _ '_3 1984 All years

.40- .49 0 4 0 0 4
_50- .59 7 3 1 0 11

.60- .69 3 2 3 2 10

.70- .74 2 3 4 0 9

.75- .79 5 6 5 4 20

.80 - .84 6 7 5 5

.85 - .89 3 7 5 9 24

.90 - .94 7 5 11 12 35

.95 - .99 9 _ 10 10 34
1.00 2 _. 0 2 6

Totals 44 44 44 44 176

Median .846 ,837 .881 .905 .875

30th percentile .760 .780 .782 570 .791

Note: The correlations are tallied only for the states that did not use stratified samples.
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Figure D-1. Cumulative distribution of estimated correlation for 44 states
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Figure D-2A. Cumulative distribution of the estimated correlation, Population A
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Figure D-2B. Cumulative distribution of the estimated correlation, Population B
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Figure D-2C. Cumulative distribution of the estimated correlation, Population C
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Figure D-3A. Cumulative distribution of the nominal 95 percent lower confidence bounds of the payment error rate using (A) the
estimated correlation, and (B) the minimum correlation rule, in the resression estimate of variance, for Population A
(based on independent simulations of 1000 samples)
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Figure D-3B. Cumulative distribution of the nominal 95 percent lower c(. '.'nce Ix)u, ut the payment error rate using (A) the

estimated correlation, and (B) the minimum correlation rule, in the regression estimate of variance, for Population B
(based on independent simulations of 1000 samples)
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Figure 13-3(2. Cumulative distribution of the nominal 95 percent lower confidence bounds of the payment error rate using (A) the

estimated correlation, and (B) the minimum correlation rule, in the regression estimate of variance, for Population C
(based on indepemlent simulations of 1000 samples)
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APPENDIX E

EXPLORATION OF SOME ALTERNATIVE PROCEDURES

FOR COMPUTING POOLED VARIANCE ESTIMATES

E.1 Introduction

The current practice in the AFDC quality control program is to estimate

the variance of the overpayment error rate for each state using only the data

provided by the sample for that state in the current period. It seems likely that the

mean square error of the estimated variance could be reduced by somehow making

use of additional data. The additional data might be:

(a) Data for the same state for prior periods; or

(b) Data for other (presumably similar) states.

We refer to variance estimation procedures that utilize data from prior time periods

or from other states as pooled variance estimation procedures.

Three principal uses for an estimated variance of an estimated

overpayment error rate are:

(1) To provide a general measure of precision of the estimated
overpayment error rate. Examples of this are to indicate the
approximate magnitude of the sampling variability of an
estimated overpayment error rate, or to compare the precision of
estimates for different states, or to compare the precision of
different allocations of the sampling effort to the state sample
and to the Federal subsample for a state.

(2) To provide a lower confidence bound for an overpayment error
rate. Consideration has been given to the use of a lower
confidence bound in various ways in the computation of
disallowances, as discussed, for example, in Chapter 3 of this
report.
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(3) To predict for a future year, the sampling errors that would
result from specific sizes of Federal and state samples for a state,
or alternatively, to determine for a future year, the approximate
sample sizes needed to achieve a specified level of precision.

The pooled variance estimation procedures that we discuss in this

appendix will be especially useful for purposes (1) and (3). We have already shown

in Sections 2.3 and 2.4 that for purpose (2) the direct estimate of variance based only

on data for the current year for a state, presumably (but not necessarily) using a

transformed Jackknife variance estimator, is a preferred procedure for computing

lower confidence bounds. As discussed in Section 2.5, such a procedure provides a
more stable lower confidence bound than would the use of the unknown true

variance of the overpayment error rate, even if it were known, or than would result

from the use of a pooled variance estimate.

In this appendix, we provide descriptions and approximate evaluations

of some alternative procedures for pooled unit variance estimation.

E.2 Variance Estimates Using Data for the Same State for Prior Periods

Alternative (a) mentioned in the introduction to this appendix

suggests the possibility of using the regression of the unit variance (defined as the

estimated variance of the estimated overpayment error rate multiplied by the

Federal subsample size) on other current and recent past data for the same state. We

tested this procedure by using the data for the 50 states and the District of Columbia

for the four six-month periods in fiscal years 1981 and 1982. The regression was

estimated from the data for the first three of the four periods. The regressor

(independent) variables were:

· The estimated overpayment error rate for period 3;

· The estimated overpayment error rate for period 2;

· The estimated overpayment error rate for period 1;

· The estimated unit standard error for period 2; and
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· The estimated unit standard error for period 1.

The regressand (dependent) variable was the estimated unit variance for period 3.

No weights were used in computing the regression. The estimated multiple

- correlation was .87, indicating that about three'fourths of the variance of the

estimated unit variances in period 3 among the states was explained by the

regression. It may be seen from the Technical Note at the end of this Appendix that

the independent variables for period 1 made trivial contributions to the regression
estimates.

Of course, the predictive value of a regression equation appears to be

higher for the data used in computing the regression coefficients than will be the

case when tested with an independent sample from the same population. An

independent sample for the same period is not available. However, a useful test of

the effectiveness of the regression procedure is to apply it to data for a succeeding

period. Consequently, an estimate of the variance for each state was computed for

period 4 by applying the regression coeffidents that had been computed for period 3.

The regressor variables were now the estimated overpayment rates for periods 4, 3,

and 2, and the estimated unit variances for periods 3 and 2. For period 4, the

estimated multiple correlation was .68, indicating that about one-half of the

variance among the states was explained by the regression. Figure E-1 illustrates,

with scatter charts, the relationship of the direct and regression estimates of the unit

variances, for states, for both periods 3 and 4. Table E-2 in the Technical Note for

Appendix E shows, by states, the values of the dependent and independent variables

used in the regression, as well as the unit variances estimated from the regression

for periods 3 and 4.

We note that if a predicted value were a perfect prediction of the true

unit variance for a state, the correlation between the predicted and the direct

variance estimate could not be high if the direct estimates are subject to large

variances, as indeed they are. Nevertheless, if a prediction method based on

independent data yields a higher correlation with the direct estimates than does a

different prediction method, also based on independent data, the higher correlation

is evidence of the greater precision of that method. We also note that since this
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particular regression approach involved the use of the estimated error rate for the

current period as an independent variable, the result is a higher correlatior and a

higher fraction of variance explained than would be the case if the current error rate

were not used as an independent variable. Moreover, since the independent

variables used in the regression predictions are subject to large variances, we

believe, without further evaluation, that this regression approach for utilizing prior

years' data provides a less promising prediction method than the alternatives we

discuss below, which employ pooled variance estimates across a considerable
number of states.

E.3 Pooled Variance Estimates for Groups of States

Alternative (b) mentioned in the introd -tion suggests the possibility

of using a composite estimator of the variance, that is, a weighted mean of the direct

estimate for the state and the average of the estimates for some group of states that

are similar to the given state in the sense that their average unit varianc_ or recent

prior periods was approximately the same. 2_.e weights would be chosen so as to

minimize, so far as feasible, within each group of states, :he mean square error of

each estimated state unit variance -o experiment with this idea, the groups were

determined by sequencing the states according to _.heaverage value _: the estimated

unit variance in fiscal years 1981 and 1982. Composite variance esumates for fiscal

year 1984 were _o be made using these groups. We note that we use data for fiscal

years 1981 and *82 to group states for making variance estimates for fiscal year 1984.

In practice, the prior years' data might or might not be available for such a grouping.

Later, we test the method by examining how well the pooled variance estimates for

fiscal year 1984 serve as predictors of the variances for 1983. It would have been

desirable to use 1985 data (which were not available). Consequently, 1983 serves as a

proxy for 1985.

Figure E-2 shows the average unit variance for the states, arranged

according to the value of the average unit variance in 1981 and 1982, as well as the

groups that were defined.
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On the basis of this graph:

· The first group was defined to consist of the first 10 states;

· The second group consists of the llth through the 21st state;

· The third group consists of the 22nd through the 31st state;

· The fourth group consists of the 32nd through the 41st state; and

· The fifth group consists of the 42nd through the 51st state.

The states assigned to each of the five groups can be seen by referring to

Table E-3, where the states are ordered by group, with a space between groups. For

each state, the composite estimate was the weighted mean of the direct estimate of

the unit variance for the state and the weighted average of these estimates for the

other states in its group, under the condition that the other states had a Federal

subsampling rate the same as that of the specified state.

Each group of states was then used to make a pooled unit variance

estimate for the current period for each of the included states. The pooled variance

estimate for state k within a group is made by taking a weighted average of the

current unit variance estimate for the particular state (state k) and the pooled unit

estimate for the other states in the group. More specifically, the pooled unit

variance estimate for state k is obtained by computing the weighted average

-2 2 2
s k = w k Sk + (1-Wk)Sok ,

where s2 is the estimated unit variance of R*k (computed as in the present AFDC
2

procedure) for the current period for state k, Sok is the weighted average (weighted by

the Federal subsample size) of the unit variance estimates for the current period for

the other states in the group (excluding state k). In this computation for state k, the

unit variance estimate for each of the other states is modified by replacing its Federal

subsampling rate by the rate used for state k.
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This pooled estimate will considerably improve the unit variance

estimate for state k provided that the true and unknown unit variance in each of
2

the other states in the group is not too different from Sk, the true (unknown) unit
2

variance for state k. The improvement results because Sok is estimated from a much
2

larger sample of cases than is s2. Of course, Sok is, in fact, a biased estimate of S2, the

2 2
bias depending on how much the expected value of Sok differs from Sk. The weight

w k for state k can be chosen, as described in the Technical Note to Appendix E, so as

approximately to minimize the mean square error of s2 as an estimate of S2k' taking

account of approximate measures of the bias as well as the variances involved.

We note, especially, as seen in the Technical Note, that in order to

compute approximately optimum values of w k for a state, estimates are needed of
2 2

the unit variance for each state, as well as of the bias of Sok as an estimate of s k. Of

course, we do not know the values of these terms and must estimate them. We

have used approximate procedures to do this, as discussed in the Technical Note. In

particular, the bias could be estimated directly for each state, but such estimates are

subject to variances that are too large to be useful. Consequently, we examine the

implications of some alternative procedures for determining an approximately

optimum w k .

As seen in the Technical Note, the estimates of the average squared

bias were negative for four of the five groups, and positive for one. While the true

squared bias must be zero or positive, negative estimates are possible. These

estimates, even the average for a group of about 10 states, are still subject to very

large sampling errors. Of course, the negative estimates are the result of sampling

errol,, and we regard the positive ones as also substantially determined by sampling

variability. Consequently, we have used two different measures of bias that result in

two sets of approximately "optimum" weights. For one set, we used an estimate of

zero bias for each state. As another alternative, we use for each state a high average
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squared bias estimate obtained as the average of the absolute values of the estimated

squared biases of the five groups.

The manner in which the weights in the composite estimator were

determined, so as approximately to minimize the average mean square error for the

states in the group, is detailed in the Technical Note at the end of this appendix.

Tables E-3 and E-4 display, for the alternative estimates of optimum

weights, the composite estimate of the unit variance in fiscal year 1984 for each of

the 50 states and the District of Columbia. The tables also show for each state,

among other things, the size of the Federal subsample (n'), the weight used in the

composite estimator, the direct estimate of the unit variance, the variances of the

estimated average variance in the group and of the direct variance estimate, and the

variance of the composite estimate of the unit variance. The definitions and the

estimation procedures are given in the Technical Note.

In addition, as a fourth and simpler alternative pooled variance

estimation procedure, we have made pooled estimates of the unit variance of the
2

Federal overpayment errors, sx, of the average payment error, t, and of the

estimated correlation of the Federal and the state determinations of overpayment

errors, r. These estimates were pooled over all states in the group. The simple

pooled unit variance estimate for a state is then

2

where fi = n'i/ni is the subsampling fraction for the Federal subsample in the state.

This procedure provides what we refer to as a simple pooled variance estimate, and

is similar but not equivalent to the assumption of zero bias in the computation of

optimal weights. Table E-5 displays the simple pooled estimates of unit variances.
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In an effort to evaluate the two alternative composite variance

estimators, we have made approximate estimates of their variances. We refer to

these estimates of the variance of the estimated variances as "experimental"
estimates. This term has been used because we have not made these estimates

directly from the sample data. Instead, as discussed in the Technical Note, we have
2

derived them from the assumption that the relvariance of the direct estimate, s_, of
^

the variance of R, the regression estimator for a state from a double sample, can be

approximated by

(1)n \ R/

2 2

The value of o_ is estimated directly from the sample data by s_. Approximate

values for _ are derived from the estimates of the variance of variances that have

been obtained from the 1000 replicated samples from each of the three test

populations, for various sizes of state samples, n, and of Federal subsamples, n'.

We did not make direct analytic estimates of the variance of the

variance of the regression estimator for a double sample because the theory is not

available. We did not regard it as worth the effort to develop the theory at this time

because we believe our "experimental" estimates provide an acceptable alternative,

and perhaps a better alternative than direct estimates which would be subject to very

large variances.

The estimated values of _ are shown in TableC-1 and are also

discussed in the Technical Note in Appendix C. A linear regression on the Federal

subsampling rate was fitted to these values of _ and used to compute approximate

values of j3 for each state. These are displayed in Tables E-3 and E-4. These and the

estimated unit variances were then substituted in Equation (1) above to compute the

"experimental" values of the variance of the estimated unit variance for each state.

The variances of the composite estimate of unit variances were derived from these,

as explained in the appended Technical Note.
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We now present two kinds of evaluations of the pooled variance

estimators. From Figure E-3 (each point represents the ratio for a state), it is seen

that the ratio of the estimated variance of the direct estimate to the estimated

variance of the composite estimate with zero as the estimate of bias squared varies

from an average of approximately a factor of 14 (varying from about 12 to 17) for

states with annual Federal subsamples of 150 to an average of approximately 8

(varying from about 6 to 10) for states with a Federal subsample size of

approximately 360. Thus, the variance of the composite estimate using zero as the

squared bias is small, very substantially below that of the direct estimate of the
variance.

The simple pooled variance estimator yields results that are very close

to those for the composite estimator using zero as the squared bias, so the variance

reductions for the simple pooled variance estimator are similar to those shown in

Figure E-3 for the "zero bias" estimator. In fact, it is shown in the Technical Note

that the correlation, across states, of the simple pooled variance estimates with those

from the composite estimate using zero bias squared is approximately .98. This

correlation is high enough that we regard it as not worthwhile to make a separate

evaluation of the variances of the simple pooled variance estimator.

We note that while the reductions in the variance of the variance

estimates are substantial for all Federal subsample sizes, they are greatest for the

states in which the Federal subsample is relatively small, and in which reductions
in the variance of the variance estimates are most needed. We also note that these

results are based on the approximate experimental variance of variance estimates, as

discussed earlier. However, since these results depend importantly on the sample

sizes involved, the ratios displayed in Figure E-3 should be reasonably close to what

they would be if the true variances of the variance estimates were known.

Figure E-3 also displays the ratios of the variance of the direct variance

estimate to the variance of the composite variance estimate using the high estimate

of the squared bias. The resemblance of the simple pooled estimator to the

composite estimator using zero squared bias is a consequence of the similarity in the

weights assigned to the direct estimate of the unit variance in these two estimators.
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In F! :e E-4, we show the weight assigned to each state for each of four

estimators of the variance of the estimated unit variance. (The es titnator designated .

"adjusted simple pooling" is described in Section 2.5.1 oi this report.) In this figure,

e states are arranged in order of the weights assigned in the simple pooling. We

_.te that the weig? ts are nearly identical for the simple pooled estimator and the

composite estimator using zero squared bias. The weights for the composite

estimator uf 'xg the "high" squared bias are much greater, and therefore, result in

less variance red_ ction. Consequently, from the point of aw of variance

reJuction, there is a considerable advantage in using the zero bi_s squared in the

composite esti: _ _tor versus the alternative high bias squared estin_ator that we have

evaluated. The adjusted pooled estimator assigns weights that are slightly less than

twice those assigned by the simple pooled estimator.

The next point tc_ :: :uate is how well the direct e.' :nate of the unit

variance, and each of the pooled variance estimates, serves as an estimate of the
unknown true unit variance for each state. We cannot make this evaluation

directly but can do it indirectly. We have shown in the Technical Note that,

without knowing the true variances for 1983, we can approximate the correlation,

across states, between the true state unit variances for 1983 and the variance

estimates for 1984, ,_or each variance estimation procedure.

Table E-! summarizes the indicated estimated coefficients of

correlations (r), and their squares (r2), called coeffidents of determination, obtained

as described ,'.', the Technical Note. These are estimated unweighted correlations

across states - a small state and a large one have equal weights.
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Table E-1. Estimated unweighted correlations of true unit variance of R for 1983 with estimated unit
variances for 1984

Estimated Estimated
coefficient of coefficient of

correlation determination

, r2

Estimated unweighted correlation of true unit
^

variance of R for 1983, with:

(a) Direct variance estimate for 1984 .64 .41

(b) Composite variance estimate for 1984 using
zero squared bias .69 .47

(c) Composite variance estimate for 1984 using
highsquaredbias .75 .57

(d) Simple composite varianceestimate for 1984 .69 .47

These correlations are reasonably high, although not as high as would

be desirable. About half of the unweighted variance between states of the true unit

variance is accounted for by each of the three pooled variance estimators, indicated

by the squared correlations. The correlations for the pooled variance estimators are

somewhat higher than the correlation for the direct variance estimation (although

this may result from sampling variability). This fact, together with the fact that their

variances are very much smaller, is sufficient to indicate the substantial advantages

of using a pooled variance estimator for general precision measures, for predicting

needed sample sizes, or for predicting the precision to be obtained from specified

sample sizes in a future year.

We note that it would be desirable, also, to estimate the correlations of

the 1984 true state unit variances with the various 1984 variance estimators. We are

not able to do this because we do not have independent direct variance estimates for

1984. Nevertheless, it is obvious that the correlations of 1984 true unit variances

with the 1984 variance estimates would be higher than those shown in Table E-1.
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On the evidence presented, it appears that the simple pooled variance

estimator might re--sonably be regarded as _he preferred one among the three
estimators we have evaluated. Since this estimator is almost identical to the

composite estimator using zero squared bias, the gains in variance reduction will be

substantial, as indicate:_ by Figure E-3. Its estimated correlation with the 1983 true

values is lower th ,_n that of the composite variance estimator with the high squared

bias. The gain in correlation with the latter (which may be real or the result of

sampling error) seerr._ not to be worth the substantial additional computation

complexity involved in computing the cot vosite variance estimates. The simple

pooled variance also has the advantage of providing separate estimates of the

2 _2variance components in the regression estimator (i.e., s x / and r) for use in

evaluating alternate allocations to the state sample and the Federal subsarnple.

It is possible that, on further analysis, an estimator intermediate

between the simple pooled variance estimator and the composite estimator with

high bias squared would be found to have additional advantages. We have

described such an alternative in Section 2.5, and the weights assigned by such an

estimator are shown in Figure E-4. It seems likely that it would have minor

advantages over the simple pooled variance estimator as defined and evaluated

here. When data for an additional year become available, such a modified simple

pooled variance estimator may reasonably be evaluated in comparison with those
shown here.

We conclude, then, that for the present, the simple pooled variance

estimator (or the modifications of it, as described in Section 2.5.1 of the report) is to

be preferred for most variance estimation purposec other than for the computation

of lower confidence bounds. The advantages, for these purposes, over the direct
variance estimator are substantial
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Figure E-1. Scatter charts illustrating the relationship between the direct estimate of variance and
the estimate based on the regression, for states, for periods 3 and 4
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Figure E-2. Average unit vari.a_ce in FY 1981-82, for states arranged by that average
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Figure E-3. Ratio of the variance of the direct estimate of unit variance to the composite estimate of
unit variance using zero and high squared bias, related to the size of the Federal
subsample
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Figure £-4. State weights for pooled unit variance estimates, for states sequenced by weight for the
simple pooled estimate
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TECHNICAL NOTE FOR APPENDIX E

This note gives details on the computations referred to in Appendix E.

Regression Estimator of the Unit Standard Error of the Payment Error
Rate

We are concerned here with the regression of the unit variance

(defined as the variance of the estimate of the payment error rate, multiplied by the

Federal sample size) on the estimated error rates in the same and the previous two

six-month periods and on the unit variances in the previous two periods. In matrix

notation, we wish to fit the model

y = X_+_

where X is a matrix of 51 rows (the 51 states) and six columns (corresponding to the

constant term and the five regressor variables as defined in Appendix E), and y is the

column vector of the unit variances. We have estimated the regression coefficient

vector _ by (unweighted) least squares, namely by

b = (xTx)'IXTy.

The computations were made using the data for the first three of the

four periods available, yielding the following solution for the vector b:

-0.0005 Constant term

0.2873 Payment error rate, period 3
-0.0090 Payment error rate, period 2
-0.00,33 Payment error rate, period 1
0.2941 Unit standard error, period 2

-0.0000 Unit standard error, period 1

The regression estimates of the unit variance in period 3 varied among the 51 states

from 0 to 0.069, with a mean value of 0.020 and a standard deviation of 0.013.
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Table E-2 gives the data and the results of the regression value of the

unit variance for period 3 as well as the calculated unit variance for period 4 using

the coefficients given above. The regression estimate of the unit variance in

period 4 varied among the states from 0 to 0.058, with a mean value of 0.019 and a
standard deviation of 0.012.

Composite Estimator of the Unit Variance

We consider first the general problem in which a composite estimate Xi

for the i-th locality of a group of localities is a weighted mean of a local unbiased

estimate xi and the mean of the estimates xj of the other localities that are members

of the same group. Let m denote the number of localities in the group. The

composite estimator for the i-th locality is defined by

xi = Wixi + (l'Wi) x'(i) (1)

where x'(i) denotes the mean of the estimates for the m-1 localities other than the

i-th locality. We wish to determine the weight Wi that minimizes the mean square

error of the composite estimator. We have

MSE(K i) = Var(_' i) + (E)_i - Exi)2 (2)

W_iOx2i 2 2= + (1-W i) Ox(i) + (1-Wi)2 (Ex-(i) - Exi)2.

The value of W i that 'minimizes the mean square error is obtained by equating to

zero the derivative of the mean square error with respect to Wi:

2 2

0 = 2Wi_x i - 2(1-W i) {Ox(i) + (Ex(i) - Exi)2}.

Solving this equation for W i yields the optimum value
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2 2

O_ + (Ei(i) - Exi)
x(i)

wi = (3)
2 2 2

(_Xi + OX6} + (E_(i} - Exi)

N

The parameters in the equation for the optimum W i are not known, So

that estimates of them are used to obtain an estimate of the optimum weight.

In our case, xi is the estimated unit variance s2 of the estimated
A

payment error rate Ri for state i. We make the assumption

2

(_ = (_i' 1) (4 / n, i (4)

where _i is a specified constant for each state i and o_ is the unit variance that is

2
estimated by si . This relationship would hold for simple random sampling with

replacement. 1 For the regression estimator with double sampling, as used in AFDC,

it is an approximate relationship. The specified [3i for each state are shown in

Tables E-3 and E-4. The values of [3i were computed from the observed relationship
2 2

of [3i (as given by the approximation [3i = 1 + n'isxi/S_i) , that is yielded by

Equation (4), to the Federal subsampling rates n'/n in the Test Populations A, B, and

C. A linear regression equation was fitted to the data shown in Table C-1 in

Appendix C. The dependent variable was the _i shown in the table, and the

independent variable was fi=n'i/ni. The resulting regression equation was

[3i = 64.3 - 54.47f i .

1Hansen, M.H., Hurwitz, W.N., and Madow, W.G., Sample Survey Methoda and Theory,Vol. I, p. 427
(New York: John Wiley & Sons, 1953)
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We then define the estimator

2

Sx. = (_i- 1) {ui(1 - (1-n'i/ni)r 2)}2/n' i (5)
1

where u i denotes the ratio of the estimated variance of the Federal determination of

the overpayment errors to the square of the average payment error estimated from

the state sample, and ri denotes the estimated correlation between the Federal and

state determinations of the overpayment errors. The expression in the braces

divided by n' i is the appropriate regression variance estimator of the payment error
A

rate, Ri, as used by AFDC.

Groups of states were defined in the following way. For each state i, for

each six-month period t in fiscal year 1981-82, the unit variance was computed as

2
sti = uti (1 - .8r 2)

where the uti and rtl are defined as u i and ri in Equation (5). This computation of

the unit variance replaces the Federal subsampling rate that was used for the state by

the constant rate .2, which is roughly the average Federal subsampling rate. The

average unit variance for state i in fiscal year 1981-82 was then taken as the weighted

mean of the four six-month periods, viz.,

2 4 2 4
si = _n'tisti/ _'. n'tit=l t,-1

where n'ti denotes the Federal sample size in period t. The states were ordered by

the value of s_ and five groups were defined as exhibited in Figure E-2.

For the set of states in a group other than the state i, the average
variance is

X(i) = j_i n'juj [1- (1-n'i/ni)r2j ]/(n'-n' i) (6)
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whose variance is estimated by

2

s-- = ]_ n'j(13j-1) {uj [1 - (1-n'i/ni)r2j] }2/(n'-n'i)2. (7)
x(i) j_*i

The term {E_'(i)-Exi}2 in Equation (3) is the square of the bias that results

when the average variance for the other states in a group is used as an estimate of

the variance for state i in the group.

To estimate (E'_(i)-Exi)2, we note that

E(x(i ) - xi)2 - E{(_'(i ) - Ex'(i)) - (xi- Exi) + (Ex(i) - Exi)}2

2 2
= _" + (_x. + (Ex(i) - Exi)2

x(i) !

since xi and _'(i) are independent. An unbiased estimate of the desired parameter,

termed the square of the bias, is then given by

2 2
(x'(i)' xi)2- s_ - Sx..

x(i) I

This could be computed directly for each state, but such estimates are subject to

extremely large variances, too large to be useful. Instead, we consider, as a first

alternative, using for each state the average squared bias for the whole group of

states. We would therefore estimate this parameter for a group by

2 2
b 2 = Y,in'ill, xi-x q))2-'' --'__ Sx. - s... }. (8)

I x(t0
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Although the parameter being estimated is non-negative, the estimate b2 may take

on a negative value for a group. In such a case, b2 may be taken to have the value

zero for the group. As a second alternative, because even the group averages are

subject to wide sampling variation, the values of b2 may be taken to be the average

over all the groups. Even the average may be negative, in which case we may take

b2=0. Substituting the estimates of the parameters in Equation (3), we obtain the

estimates of _/i.

A further modification is suggested by the fact that the first term in the
2

denominator of W i, namely Oxi, is subject to a quite large variance. We therefore
2

consider replacing the estimate s2 by a more stable estimate of Oxi in the following

way. We first replace the quantity within the braces in Equation (5) by the average of

such quantities for the other states in the same group; the latter is given by _(i) of

Equation (6). We then define the more stable estimator as the weighted mean of the

new variance computed by Equation (5) and the direct estimate of variance for the

state. Thus, we have

S =
xi ri'

2

This is then substituted for Oxi in Equation (3).

The various parameters as discussed above were estimated for each

state from the state data for fiscal year 1984, based on the groups of states as defined

above and displayed in Figure E-2 and Tables E-3 and E-4. The average value of b 2

turned out to be negative. Table E-3 gives the composite estimates when b 2 is taken

to be zero for each group. Table E-4 gives the composite estimates when b2 is taken

to be the weighted mean of the absolute values of the value of b2 computed for each

group. We refer to this as the "high" squared bias, because it is likely to be greater

than the true squared bias (since its expected value is greater). In addition to the

composite estimate of the unit variance for each state, Tables E-3 and E-4 display the
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size of the Federal subsample, n', the values of 13(beta), the estimated error rate, the

weight used in the composite estimator, and the experimental estimate (described
below) of the variance of the estimated unit variances for both the direct estimate

and the composite estimate.

The weight calculated for a state is considerably greater when the

"high" squared bias is used than when a zero squared bias is used. The true

optimum weight is somewhere between the two, since the true squared bias is

undoubtedly positive. Figure E-5 is a scatter diagram which shows the relationship

of the weights for zero and high squared bias. We note that, on the average, the

weight is about four times higher when the high squared bias is used. Figure E-4

also shows this relationship.

Because the composite estimator involves considerable computation,

we consider also a simple pooled estimate of the unit variance. Groups of states are

defined as above for the composite estimator. For state i of group g, the simple

pooled estimator of the unit variance is given by

'{(n)}ssx 1- 1- si r2 (9)
-2 _. g
t 8_

g

In this expression, ng i and n'g i denote the sizes of the state sample and the Federal

subsample, respectively. The other quantities are weighted means of corresponding

quantities for all states in the group. Specifically,

sgx - - Sgix / (n'g-i

Sgy = i

Sgxy = '_ (n'gi' 1) sgixy / (n'g- mg)

E-23



Appendix £

rg = Sgxy / Sgx Sgy

mg = number of states in group g

n'g = _ n'g i

2
Sgix = estimated unit variance of the Federal determination of

payment error

2 = estimated unit variance of the state determination of
Sgiy

payment error, as estimated from the Federal subsample

Sgixy = estimated unit covariance of the Federal and state
determinations of payment error.

Table E-5 displays the simple pooled estimates for each state. These

closely resemble the composite estimates using zero squared bias, as exhibited in

Figure E-6. The correlation between the two state estimates is .978. On the average,

the simple pooled estimate is about 10 percent greater than the composite estimate.

The variance of an estimate of the unit variance for a state is a function

of the size of the sample used to estimate the unit variance. In Figure E-3 we show,

by state, the ratio of the direct estimate for fiscal year 1984 to the composite estimate

(using zero squared bias and the high squared bias) as related to the Federal sample

size. The relationship, as expected, appears to be a monotone decreasing function of

the sample size, concave upward, and somewhat flatter when using the high

squared bias.

An important reason for seeking a better estimate of the true unit

variance in a given year is to predict the unit variance in a subsequent year, for the

purpose of determining the sample sizes that will yield estimates of the payment

error rate of some prescribed precision. In the discussion above, we have used data

for fiscal years 1981 and 1982 to group states, and have then estimated unit variance
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for 1984. In practice, we would estimate the unit variance for 1983 and use it to

predict the unit variance for 1984. Since this should be similar to "predicting" 1983

from the 1984 estimates, we present such analyses here. Figure E-7 presents scatter

diagrams showing the relationships of the several 1984 estimates of unit variance to

the direct estimate for 1983. As shown in Figure E-7, each of the estimates for 1984

shows a moderate correlation with 1983, of about .5 (ranging from .44 to .52).

To evaluate the 1984 pooled variance estimator as a predictor of the

1983 variance, let

xti - direct estimate of unit variance for state i in year t, where
t---3for fiscal year 1983 and t--4 for fiscal year 1984;

Zti - pooled estimate of unit variance;

Xti -- true ullit variance; and

Zti = expected value of zti.

We are interested in the correlation, over states, between the direct estimate for 1984

and the true unit variance for 1983, and the correlation between each of the pooled
unit variance es '-t_nates for 1984 and the true unit variance for 1983. We denote

these correlation coefficients by Px4x3 and pz4x 3, respectively. We define

Ax4i = x4t-X4i

'X4 --- average of X4i across states

Y_3 = average of X3i across states.

The covariance of x4i and X3i across states is defined by
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(_x4x3 = E E{(x4i-_(4)(X3i- _C3)[i}

= E E{(X4i + Ax4i- X4)(X3i- _C3) Ii}

= E E{(X4i-X4)(X3i-_3)[i}

= E(x4i-xi)(x3_' x3)

= Ox4x3 .

The variance of x4i across states is defined by

2

ox4 = E_.{(x_-_4)2li}

= E E{(X4i + Ax4i- X4)2 Ii}

= E E{(X4i- X4 )2} + E E{(Ax4i)2 Ii}

2

= E(X4i- X4 )2 + E{(_Ax41l i}

2 2

aX4+ ,say.= _4

Since

E(X3i-X3 )2 = O_

we have
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Clx4X 3

Px4X3 -
(_x4 (_X3

C_x4x3

*x 3 ax 4 + a_x 4

(_X4X3

Ox30x4 1 + o&X4 / {_x4

1 (10)
= OX4X3 2 2

._/1, /ox4(__X4

Similarly, it can be shown that

1
= (11)

Pz4X3 PZ4X3 2 2

_Az 4

None of the correlations between the values X3, X4 and Z4 can be

estimated directly from the data. We can, however, estimate the correlations of

their estimates, and similar algebraic manipulation shows that

2 2 1

Px3'x4 = PX4X3 2 2 (12)

%- ox2.-
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2 2 1

Px3z4= PX3Z4 2 2 (13)

+ _&x3)

Solving Equation (12) for Px4x 3 and substituting into Equation (10), we

obtain

z

(_x 3

Px4X 3 = 1 + _ Px3x4 (14)
°x3

Similarly, solving Equation (13) for Px3z4and substituting into

Equation (11), we obtain

z

er_kx3

Pz4X3 = 1 + _ [)x3z4 (15)
Ox3

It is necessary to estimate the quantifies in these equations. We have

I 51
E 51 ._ (X4i' X'4)2

1

1 51
= 51 ._ E{(x4i' X4i) + (X4i' X'4) + (X4' X4)}2

1

1 51
= 5-"1" _ {E(x4i'X4i)2+(X4i"_4)2+E(x4'X4 )2i

-2-E("4'x4) ' x4 )}
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1 51 2

= 5-T' _'' { flrx4i + (X4i- _4 )2- E(-x'4 ' X4)2}1

-- OAx 4 + OX4

We ignore the third term of the right member since it is small compared to the first

term. Similarly, we have

1 51 2 2

E 51 ._ (z4i-7'4)2 ' (Iziz4 +OZ4 '1

From Table E-3, we compute the estimates of the quantities involved:

1 51

5-T" Y' (x4i ' fi4)2 = 1.2228 x 10-4

2

sax4 = 6.4484 x 10'5

so that

2

Sx4 = 5.7796 x 10.5

and

2

1.1157.2 --

%
We assume that this ratio has the same value for 1983 as for 1984, so that we take

2

2 = 1.1157.

%
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From the data we have also estimated

^

P×3x4 = .439

A

Px3z4 = .473 for the composite estimate using zero squared bias

= .519 for the ,_omposite estimate using high squared bias

= .473 for the simple pooled estimate.

Substituting the estimates into Equations (14) and (15) yields

A

Px4X_.639 Composite.688zero bias Composite.755high bias I Simple.688Pooled

Thus, the composite estimate using zero squared bias and the simple pooled

variance estimates for 1984 have the same estimated correlation with the true unit

variance for 1983. The estimated correlation with the direct estimate is somewhat

lower. It is somewhat higher with the composite estimate with high squared bias.

The differences may be real or due to sampling variability. These correlations are

about 50 percent greater than the correlation between any of these estimates for 1984

and the direct estimate for 1983.

We return to explain the computation of the variances of the

composite estimators, as shown in the last column of Tables E-3 and E-4. These

values, which we have termed "experimental," are based on the following

speculation. For economy of notation, let s_ denote the variance defined by
2

Equation (5) and s(i) the variance defined by Equation (7). Let -2s i denote the

composite estimate of the unit variance for state i, i.e.,

_2i =W 2 2iSi + (1-W i) S(i )
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Conditional on the value of W i,

Var(_) - ,,
2

since s_ and S(i ) are independent. We take

var(s )- (s )2/n',
and

Var(s(_)) = jZi (n'_2Var(s2j)/(n'-n'i )2.

The experimental estimate of the variance or mean square error is given by

substituting estimates of the quantities in Equation (16).

The problem with direct variance estimates by states is their greater

sampling variability, as discussed in Section 2.5 of the report and in Appendix C.

We conclude that the sampling variability of the composite estimator is

considerably less, as illustrated in Figure E-3. Consequently, for making estimates of

needed sample sizes, at least, the composite estimates are likely to have substantial

advantage over the use of the direct state variance estimates.

With the squared biases assumed equal to zero, use of the pooled unit

variance estimate for each state results in a mean square error of the variance

estimates that varies from about one-sixth to one-fourteenth as large, depending on

the size of the state and Federal samples, as the variance of the unit variance

estimate based only on the current data for a state. This may modestly overstate the

gains. The mean square errors for the estimates assuming biases show mean square

error reductions of about half this amount, but these substantially understate the

gains because the biases, by design, are substantial overestimates. Clearly, the

improvement through pooled variance estimation is substantial for all states, but is

of course greatest for the states with the smaller AFDC_ samples.
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Table E-2. Data and results of regression esgrnates of variance, by states

Estimated payment error rate Es_rnated unit variance Re_ression es_mates

Period Period Period

State 1 2 3 4 1 2 3 4 3 4

AK .1376 .2211 .1288 .1104 .04417 .13373 .07181 .05147 .06947 .04653
AL .0832 .0709 .0551 .0508 .03238 .01607 .01482 .01842 .01522 .01380
AR .0657 .0701 .0884 .0521 .01705 .00986 .02907 .01493 .02303 .01807
AZ .0874 .0784 .1155 .1165 .02107 .02190 .02900 .02887 .03421 .03628
CA .0861 .0500 .0736 .0463 .04103 .01264 .02717 .01636 .01971 .01604
(30 .0998 .0652 .0500 .0800 .04197 .01983 .01643 .01496 .01486 .02273
CT .0798 .0690 .0528 .0748 .00155 .00999 .01124 .04580 .01280 .01967
DC .1511 .1198 .1759 .1666 .00896 .04274 .05690 .03832 .05711 .05820
DE .1285 .1024 .1008 .1357 .06263 .03811 .06372 .13296 .03440 .05206
FL .0749 .0836 .0631 .0576 .00617 .01429 .01126 .00972 .01691 .01459
GA .0732 .0577 .0477 .0549 .01105 .00737 .01773 .02082 .01069 .01594
HI .1012 .1008 .0872 .0770 .03756 .02881 .03234 .05748 .02786 .02609
IA .0440 .0411 .0406 .0490 .00890 .00500 .00775 .01111 .00820 .01143
ID .1265 .0507 .0473 .0613 .07180 .02711 .01128 .02674 .01627 .01591
IL .0860 .0793 .0767 .0883 .02616 .01034 .02030 .03559 .01966 .02596
IN .0520 .0323 .0345 .0425 .01478 .00511 .00429 .01227 .00653 .00863
KS .0751 .0870 .0562 .0008 .00967 .03703 .02391 .00004 .02158 .02480
KY .0550 .0443 .0337 .0378 .00773 .00596 .00443 .00775 .00643 .00729
LA .0577 .0763 .0645 .0604 .01396 .01300 .02134 .00727 .01705 .01838
MA .1112 .0735 .0545 .0944 .03411 .01689 .00842 .01699 .01517 .02444
MD .1179 .1132 .0911 .0733 .01047 .02996 .02363 .01769 .02916 .02239
ME .0861 .0716 .0526 .0291 .02243 .01710 .01581 .00280 .01479 .00788
MI .0691 .0767 .0898 .0814 .01040 .03191 .01360 .00946 .02984 .02190
MN .0381 .0499 .0309 .0297 .01933 .02657 .01415 .02225 .01169 .00783
MO .0648 .0770 .0611 .0343 .01834 .01609 .01344 .01141 .01695 .00858
MS .0733 .0649 .0500 .0446 .01431 ,02044 .01391 .02405 .01513 .01182
MT .0688 .0305 .0113 .0384 .02961 .00550 .00303 .02612 -.00006 .00730
NE: .0619 .0465 .0372 .0283 .00859 .00406 .00288 .00452 .00684 .00407
ND .0330 .0287 .0128 .0234 .01668 .00666 .00284 .00736 .00084 .00350
NE .0410 .0676 .0586 .1325 .01849 .04232 .01945 .08227 .02417 .03862

.0549 .0771 .0584 .0587 .04010 .00648 .02194 .02564 .01338 .01811
NJ .0836 .0770 .0936 .0522 .02154 .02009 .02882 .00900 .02741 .01795
NM .1241 .1236 .1189 .0915 .04409 .04972 .02956 .02926 .04284 .02908
NV .0250 .0203 .0147 .0104 .01310 .00019 .00152 .00941 -.00041 -.00119
NY .0912 .0694 .0681 .0913 .01118 .01816 .01055 .02338 .01956 .02407
OH .0838 .0933 .0769 .0753 .02562 .02783 .01982 .03070 .02474 .02204
OK .0492 .0829 .0465 .0286 .03647 .03942 .01665 .01143 .01962 .00800
OR .0670 .0685 .0734 .0679 .01669 .05963 .04594 .02411 .03336 .02771
PA .0979 .0830 .0937 .0762 .01062 .01364 .03423 .01128 .02544 .02642
RI .0676 .0573 .0584 .0548 .02607 .01144 .02007 .02837 .01498 .01651
SC .0739 .0828 .0937 .0839 .01571 .00972 .02264 .01540 .02437 .02522
SD .0721 .0208 .0376 .0365 .06411 .00378 .01002 .01380 .01001 .00860
'IN .1019 .0771 .0557 .0427 .01251 .02053 .01523 .00928 .01659 .01157
'IX .0711 .0791 .0881 .0790 .02880 .01595 .02411 .02165 .02463 .02431
Ur .0598 .0371 .0543 .0457 .03545 .01057 .01957 .01897 .01375 .01385
VA .0369 .0349 .0330 .0481 .00867 .00470 .00238 .01301 .00600 .00968
VT .0382 .0646 .0566 .0327 .01421 .03737 .00749 .01562 .02212 .00645
WA .0985 .0868 .0731 .0560 .07344 .02723 .02435 .00640 .02348 .01788
WI .0942 .0771 .0489 .0489 .02155 .01907 .01607 .01607 .01423 .01366
WV .1894 .0762 .0811 .0838 .10835 .01851 .01519 .02310 .02302 .02314
WY .0709 .0836 .0385 .0563 .03275 .03759 .02020 .04434 .01671 .01707
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Table E-3. Composite estimates of unit variance, using zero squared bias, by states

[ ! Unit variance Variance of:

Gnvup Variance
_x_ Local average of

State n' beta f Weight Direct Composite average variance variance composite

ND 144 39 .456 .066 .0268 .0146 4.028E-06 5.729E-05 .0137 3,764E-06
NV 151 39 .462 .079 .0146 .0146 4.599E-06 5.336E-05 .0146 4.235E-06
NC 368 56 .147 .158 .0070 .0074 1.550E-06 8.288E-06 .0075 1.306E-06
IA 344 51 .239 .151 .0077 .0095 2,368E-06 1.327E-05 .0098 2.009E-06

_KY 145 38 .482 .076 .0185 .0151 4.767E-06 5.770E-05 .0148 4.403E-06360 56 .156 .156 ,0060 .0076 1.666£-06 8.992E-06 .0079 1.406E-06
VA 364 55 .162 .155 .0075 .0078 1.643E-06 8.978E-06 .0078 1.389E-06
IN 377 56 .161 .165 .0034 .0077 1.833E-06 9.258E-06 .0085 1.530E-06

147 39 .473 .059 .0335 .0148 3.889E-06 6.214E-05 .0137 3.660E-06
UT 177 37 .500 .095 .0191 .0155 5.096E-06 4.860E-05 .0152 4.612E-06

MT 150 38 ,479 .066 .0350 .0244 1.035E-05 1.455E-04 .0236 9.659E-06
ME 219 46 .335 .083 .0197 .0189 6.669E-06 7.358E-05 .0189 6,115E-06
FL 360 56 .153 .I02 .0167 .0122 2.658E-06 2.337E-05 .0117 2.386E-06
AR 241 51 .252 ,085 .0113 .0158 4,899E-06 5.258E-05 .0162 4.481E-06
KS 257 48 .298 .087 .0243 .0176 5.460E.06 5.705E-05 .0170 4,983E-06
SD 151 39 .456 .069 .0124 .0231 1.021E-05 1.384E-04 .0239 9.512E-06

_GA 373 56 .154 .115 .0137 .0123 2.897E-06 2.232E-05 .0121 2.564E-06361 56 .146 .110 .0140 .0120 2.729E-06 2.210E-05 .0118 2.429E-06

_MO 358 53 ,211 .125 .0074 .0143 4.4OOE-06 3.092E-05 ,0152 3.852E-06405 56 .149 .131 .0112 .0121 3.008E-06 1.999E-05 .0123 2.615E-06
'IN 366 56 .159 .120 .0095 .0125 3.236E-06 2.362E-05 .0129 2.846E-06

RI 219 44 .369 .106 .0172 .0217 1,115E-05 9. _?,A.E-05 .0222 9.975E-06
SC 363 54 .194 .154 .0099 .0153 6.529E-06 3.587E-05 .0162 5.524E-06
NY 357 56 .148 .118 .0239 .0140 4.251E-06 3.163E-05 .0127 3.747E-06
CC) 288 48 .299 .130 .0091 .0189 9.381E-06 6.268E-05 .0203 8.160E-06
MI 364 56 .150 .151 .0129 ,0139 5,2191::--06 2.945E-05 .0141 4.433E-06
PA 365 56 .148 .106 .0273 .0138 3.830E-06 3.237E-05 .0122 3.425E-06
WI 372 56 .149 .143 .0182 .0140 4.814E-06 2.892E-05 .0134 4.127E-06
AZ 258 49 .286 .092 .0359 .0192 7.216E-06 7.0941:--05 .0175 6.549E-06
MS 361 55 .176 .149 .0036 .0144 6.229E-06 3.555E-05 .0163 5.300E-06
MN 366 54 .192 .152 .0038 .0149 6.673E-06 3.713E-05 .0169 5.657E-06

MA 366 56 .149 .127 .0184 .0181 7.1761L06 4.924E-05 .0181 6.263E-06
NJ 362 56 .149 .130 .0148 .0180 7.468F,.-06 4.994E.05 .0185 6.497E-06
AL 367 55 .179 .116 .0255 .0191 7.1841_--06 5.452E-05 .0182 6.348E-06
WV 298 51 .239 .115 ,0126 .0209 9.814F,.-06 7.573E-05 .0220 8.688E-06
OK 278 50 .268 .107 .0067 .0217 1.075E-05 8.958E-05 .0235 9.596E-06
ID 156 37 .495 .069 .0540 .0300 1.545E-05 2.0911_-04 .0283 1.439E-05
MD 363 56 .150 .132 .0130 .0181 7.651E-06 5.043a-05 .0188 6.643E-06
WY 164 39 .471 .076 ,0334 .0289 1.574E-05 1.922E-04 .0285 1.455E-05
CA 387 56 .151 .120 ,0245 .0181 6.534E-06 4.773E-05 .0173 5.7471_-06
IX 363 56 .149 .122 .0208 .0181 6.913E-06 4.979E-05 .0177 6.070E-06

IL 382 56 .152 .116 .0211 ,0151 4.539E-06 3.445E-05 .0143 4.010E-06
NM 230 46 .337 .103 .0141 .0228 1.201 F,,-05 1.048E.04 .0238 1.078E-05
OH 368 56 .151 .144 .0083 .0152 6.041E-06 3.598lR-05 .0164 5.173E-O6
NE 199 43 ,397 .089 .0316 .0256 1.337F,.-05 1.376E-04 .0250 1.218E-05
DC 240 48 ,297 .095 .0261 .0213 9.391E.06 8.92911-05 .0208 8.497E-06
HI 211 45 .349 .087 .0316 .0235 1.112E-05 1.1621:--O4 .0228 1.015E-05
WA 389 54 .182 .155 .0110 .0165 6.999E-06 3.804lE-05 .0175 _5.912E-06
OR 280 50 .264 .116 .0147 .0199 9.245E-06 7,031E-05 .0206 8.171E-06
AK 160 38 .479 .082 .0327 .0290 1.734E-05 1,930E-04 .0286 1.591E-05

164 36 .524 .085 .0453 .0311 1.897E-05 2.046E-04 .0298 1.736E-05

Average .0185 .0173 6.999E-06 6.448E-05 .0173 6.266E-06
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Table E-4. Composite estimates of unit variance, using high estimate of average squared bias, by states

Unit variance Variance of:

Group Variance

Cauttp Local average of
State n' beta f Weight Direct Composite, average variance variance composite

ND 144 39 .456 .387 .0268 .0188 4.028E-06 5.729E-05 .0137 1.008E-05
NV 151 39 .462 .407 .0146 .0146 4.599E-06 5.336E-05 .0146 1.047E-05

368 56 .147 .802 .0070 .0071 1.550E-06 8.288E-06 .0075 5.396E-06
IA 344 51 .239 .722 .0077 .0083 2.368E-06 1.327E-05 .0098 7.099E-06
VT 145 38 .482 .390 .0185 .0162 4.767E-06 5.770E-05 .0148 1.054E-05
KY 360 56 .156 .790 .0060 .0064 1.666E-06 8.992E-06 .0079 5.680E-06
VA 364 55 .162 .790 .0075 .0076 1.643 E-06 8.978E-06 .0078 5.673E-06
IN 377 56 .161 .786 .0034 .0045 1.833E-06 9.258E-06 .0085 5.798E-06

147 39 .473 .367 .0335 .0209 3.889E-06 6.214E-05 .0137 9.915E-06
UT 177 37 .500 .433 .0191 .0169 5.096E-06 4.860E-05 .0152 1.077E-05

MT 150 38 .479 .226 .0350 .0262 1.035E-05 1.455E-O4 .0236 1.362E-05
ME 219 46 .335 .345 .0197 .0192 6.669E-06 7.358E-05 .0189 1.162E-05
FL 360 56 .153 .598 .0167 .0147 2.658E-06 2.337E-05 .0117 8.784E-06
AR 241 51 .252 .413 .0113 .0142 4.899E-06 5.258E-05 .0162 1.065E-05
KS 257 48 .298 .397 .0243 .0199 5.460E-06 5.705E-05 .0170 1.097E-05
SD 151 39 .456 .234 .0124 .0212 1.021E-05 1.384E-04 .0239 1.358E-05
LA 373 56 .154 .610 .0137 .0131 2.897E-06 2.232E-05 .0121 8.759E-06
GA 361 56 .146 .612 .0140 .0131 2.7291_-06 2.210E-05 .0118 8.681E-06
CT 358 53 .211 .541 .0074 .0110 4.40OIR-06 3.092E-05 .0152 9.985E-06
MO 405 56 .149 .637 .0112 .0116 3.008E-06 1.999E-05 .0123 8.511E-O6
'IN 366 56 .159 .599 .0095 .0109 3.236E-06 2.362E-05 .0129 9.003E-06

RI 219 44 .369 .314 .0172 .0207 1.115E-05 9.444E-05 .0222 1.456E-05
SC 363 54 .194 .518 .0099 .0129 6.529E-O6 3.587E-05 .0162 1.116E-05
NY 357 56 .148 .535 .0239 .0187 4.251E-O6 3.163E-05 .0127 9.962E-06
(30 288 48 .299 .398 .0091 .0159 9.381E-O6 6.268E-05 .0203 1.334E-05
MI 364 56 .150 .559 .0129 .0134 5.219E-O6 2.945R-05 .0141 1.021E-05
PA 365 56 .148 .526 .0273 .0201 3.830E-O6 3.237£-05 .0122 9.816E-06
WI 372 56 .149 .561 .0182 .0161 4.814B-06 2.892E-05 .0134 1.002E-05
AZ 258 49 .286 .357 .0359 .0240 7.216E-O6 7.094E-05 .0175 1.200E-05
MS 361 55 .176 .519 .0036 .0097 6.2291R-O6 3.555E-05 .0163 1.101E-05
Mb/ 366 54 .192 .511 .0038 .0102 6.673E-O6 3.713E-05 .0169 1.128E-05

MA 366 56 .149 .444 .0184 .0182 7.1761_-O6 4.9241t-05 .0181 1.191E-05
NJ 362 56 .149 .442 .0148 .0169 7.468E-06 4.994E-05 .0185 1.208E-05

367 55 .179 .419 .0255 .0213 7.184F.-06 5.452E-05 .0182 1.19911-05
WV 298 51 .239 .356 .0126 .0186 9.814E-06 7.573E-05 .0220 1.368E-05
OK 278 50 .268 .324 .0067 .0181 1.075E-O$ 8.9S8R-05 .0235 1.4291_-05
ID 156 37 .495 .185 .0540 .0330 1.545B.05 2.091E-04 .0283 1.743E-05
MD 363 56 .150 .441 .0130 .0163 7.651F,-06 5.043E-05 .0188 1.219E-05
WY 164 39 .471 .199 .0334 .0295 1.5741_--O5 1.922E-04 .0285 1.772E-05
CA 387 56 .151 .447 .0245 .0205 6.534E-O6 4.773E-05 .0173 1.154F.-05
'IX 363 56 .149 .439 .0208 .0191 6.913E-06 4.979E-05 .0177 1.178E-05

IL 382 56 .152 .515 .0211 .0178 4.539F.-06 3.445lE-05 .0143 1.0211_.-05

_1 230 46 .337 .296 .0141 .0210 1.201R-05 1.048E-04 .0238 1.514E-05368 56 .151 .514 .0083 .0122 6.041F..06 3.598E-05 .0164 1.095E-05

i_ 199 43 .397 .248 .0316 .0266 1.337R-O5 1.376E-04 .0250 1.604E-05240 48 .297 .317 .0261 .0225 9.391E-06 8.9291E-05 .0208 1.336£-05
HI 211 45 .349 .271 .0316 .0252 1.112E-05 1.162E-04 .0228 1.444E-05
WA 389 54 .182 .507 .0110 .0142 6.999E-06 3.804E-05 .0175 1.147E-05
OR 280 50 .264 .370 .0147 .0184 9.245E.-06 7.0311_--05 .0206 1.330£-05
AK 160 38 .479 .204 .0327 .0295 1.7341g-05 1.930E-04 .0286 1.902E-05
DE 164 36 .524 .200 .0453 .0329 1.897E-05 2.046E-04 .0298 2.031E-05

Average .0185 .0174 6.999E-06 6.448E-05 .0173 1.153E-05
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Table E-5. Pooled unit variance estimates, by states

Pooled
State n' f unit variance

I'_ 144 0.456 0.01708
NV 151 0.462 0.01724
NC 368 0.147 0.00885
IA 344 0.239 0.01130
VT 145 0.482 0.01777
KY 360 0.156 0.00908
VA 364 0.162 0.00924
IN 377 0.161 0.00922
1_I 147 0.473 0.01753
UT' 177 0.500 0.01826

MT 150 0.479 0.02550
ME 219 0.335 0.02008
FL 360 0.153 0.01320
AR 241 0.252 0.01692
KS 257 0.298 0.01866
SD 151 0.456 0.02463
LA 373 0.154 0.01323
GA 361 0.146 0.01295
CT 358 0.211 0.01539
MO 405 0.149 0.01306
TN 366 0.159 0.01343

RI 219 0.369 0.02686
SC 363 0.194 0.01907
NY 357 0.148 0.01705
CX) 288 0.299 0.02372
MI 364 0.150 0.01712
PA 365 0.148 0.01702
WI 372 0.149 0.01706
AZ 258 0.286 0.02317
MS 361 0.176 0.01829
MN 366 0.192 0.01899

MA 366 0.149 0.02251
NJ 362 0.149 0.02250

367 0.179 0.02368
WV 298 0.239 0.02598
OK 278 0.268 0.02710
ID 156 0.495 0.03592
MI) 363 0.150 0.02256
WY 164 0.471 0.03499
CA 387 0.151 0.02259
'IX 363 0.149 0.02251

IL 382 0.152 0.01794
NM 230 0.337 0.02543
OH 368 0.151 0.01792
NE 199 0.397 0.02785
DC 240 0.297 0.02379
[] 211 0.349 0.02592
WA 389 0.182 0.01917
OR 280 0.264 0.02249
AK 160 0.479 0.03115
EIE 164 0.524 0.03296
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Figure E-5. Weights for the composite estimate using zero and high squared bias
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Figure E-7. Relationship of various estimates of unit variance for 1984 to the direct estimate for 1983 (x 103)
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Figure E-7. Relationship of various estimates of unit variance for 1984 to the direct estimate for 1983 (x 103)
(continued)
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APPENDIX F

OPTIMUM SAMPLE SIZE FOR DISALLOWANCES BASED ON POINT ESTIMATES

For the purpose of this appendix, we may define the optimum sample
size as that which minimizes the cost. But the cost can be defined in more than one

way. We shall define the expected cost from the Federal point of view as the Federal

share of the cost of review of the state sample plus the cost of review and processing

the Federal subsample minus the expected value of the disallowance assessed. We

shall define the expected cost from a state's point of view as its cost of processing the

state sample plus the expected value of the disallowance assessed.

Let us denote

U = the Federal contribution for the time period;

k = proportion of the cost that is borne by the state;

n = size of the state sample;

n' = size of the Federal subsample;

co = state share of the state cost per case in the state sample;

c1 = Federal share of the state cost per case in the state sample;

c2 = Federal cost per case in the Federal subsample;

r = estimated payment error rate; and

R = E(r), the expectation of r.

We consider, first, the problem of minimizing the variance (thus

maximizing the precision) of the estimated payment error rate, for a fixed Federal

cost K defined by cln + c2n'. The minimizing values of n and n' are obtained by

-- setting equal to zero the partial derivatives of the function
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2
= or - I.(K - cln - c2n')

and solving the resulting equations for t., n and n'. This gives the optimum

subsampling fraction f = n'/n as

f2 = {(1.p2)/p2}{ct/c2}.

The optimizing sample sizes are then

n = K/(c l+fc 2)

n' = fn.

Present plans call for annual samples of n-2400 and n'=360 in large

states. It has been estimated that c1=$130 and c2=$330, which gives rise to the value

K=$430,800. The values that would minimize the variance for that cost would be

n=1667 and n'=649.

We now suppose that a portion of the Federal contribution U to a state

is withheld when the point estimate of the payment error rate, r, exceeds .03, and

that then the disallowance is the fraction of the Federal contribution equal to the
excess of r over the tolerance level .03. Let

= (r - .03)

g = E(_ - (R-.03) U

02 22= = Uo r .

The disallowance is defined by

_ if r> .03D = 0, otherwise.
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It can be shown (see note at the end of this Appendix) that, since _ is approximately

normally distributed, the expected value of the disallowance is approximately

E<D)-- <o/__ <-_2/2o_)+C_/_/_f' exp<-t2/2>at.
-Via

This expression can be evaluated, given the values of o (which is a function of n, n',

and certain other parameters) and of g (which is a function of R and U).

The expected value of the gain to the Federal government is

G = E(D)- cln-c2n'.

2
We pose the question: given that it is required to attain a variance a r

of the estimated payment error rate, is it possible to choose a state sample size n that
maximizes G? We have

2 {o_/-T_'}{_(_-n'/n)p2}·

2
°x = variance of the payment error finding by the Federal review;

T = average AFDC paymentl; and

p = correlation between the Federal and state findings.

To attain a given variance O2rgiven the sample size n, we must have

2 2 2
n' = (1-0 )lCae%lax-p2/n).

Since n' < n, we must satisfy the inequality

1We have used T (which is a constant) in the estimate rather than the estimate from the state sample,
in order to simplify this analysis.
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Thus, for example, if the standard error is to be at most ar=.01, and if the ratio

Ox/T=.2, then the state sample size must be at least n=400. The Federal subsample

size would then have to be n'=289 if p=.85. If n were increased to 2400, the desired
standard error would be attained with n'=127.

For values of n satisfying the conditions stated above, we now examine

the properties of G as a function of n for a fixed value of Or. We have

dG/dn = -c1 - c2 dn'/cin

2 2 --2 2_ 2_2x2
= -c 1 + c2(1-p )p /(nT Or/Ox- p I ·

Table F-1 gives the values of this derivative for cl=130, c2-330 and several values of

the other parameters. An entry of zero in the table indicates that the specified
standard error cannot be attained with the associated value of n. The table shows

that once the state sample is of sufficient size to yield the desired standard error,

increasing the size of the Federal subsample will only reduce the expected value of

the Federal gain.

We now also examine the effect on the expected value of the Federal

gain that would result from varying the desired standard error. The derivative of

E(D) with respect to a is

(1/'_/2_) _ (-].1.2/20'2)

which is always positive. For a fixed n, we have dD/dn'=(dD/do)(do/dn'). Since

da/dn' is clearly negative, so is dD/dn'. Thus, the expected Federal gain is a

decreasing function of the Federal sample size, for any given size of the state sample.

It follows that to maximize the expected value of the Federal gain, given the state

_ sample, the Federal sample should be as small as possible. Similarly, to maximize
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the Federal gain, given the size of the Federal subsample, the state sample should be

as small as possible. We conclude that from the point of view of maximizing the

expected value of the Federal gain, there is no optimum choice of the sample sizes.
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TECHNICAL NOTE FOR APPENDIX F

Theorem: Let _ be normally distributed with mean g and variance 02,

and let D be the random variable defined by

{ if_>0D = 0, if{ <0.

Then the mathematical expectation of D is

ED=(o/qi-_xp(_.2/=_2>+_/q_f' e_,(-¢/:>.
_/o

Proof:.

ED = Prob (_,_;0) x 0 + Prob (_ > 0) x E(_ J _,>0)

= (1/=_52-_o>j--×exp(-(x-.2/2o_>}a_.
o

Under the transformation t=(x-g)/o we get

ED = (1/_ f" (_ + la)exp(-t2/2)dt

_/a _/a

= <o/_/iZ_c-.2/=_>+_/Qii5f- _<-e/=>at
_/a

which was to be proved.

F-6



Slope of the Federal gain function of the state sample size

rho= 0.05 T-bar- 300 S(x)= 60

n $Landarderroroftheestimatedpmymenterrorrate
0.005 0.01 0.015 0.02 0.025

I00 0 0 0 -129.7616 -129.9212
200 0 0 - 12g.B_6 -129.g4a2 - 12g.g725
300 0 0 - 12g.g314 - 1299709 - 1299833
400 0 -129.7515 -129.9".567 -129.g7gB -1299§§
500 0 - 129.8746 - 129.988_ - 129.9845 - 129.9907
600 0 - 129.9149 - 129.g751 - 129.9§7'J - 1299924
700 0 - 129.9,356 - 12g.9794 - 129.9895 - 129.9935
800 0 - 129.9462 - 12g.982_ - 129.9909 - 129.9944
900 0 -129.9567 -129.g846 -129.992 -129.995

1000 0 - 12g .9620 - 12g.9865 - 129.9929 - 12g.9956
1100 0 -129.9674 -129.9879 - 129.99_6 -129.996
1200 0 -129.9709 -129.989 -129.g941 -129.9963
1300 0 - 129.9738 - 129.99 - 129.9946 - 129.90,66
1400 0 -129.9762 -129.9907 -129.995 -129.9969
1500 0 -129.9781 -129.9914 -129.9954 -129.9971
1600 -129.7616 -129.9798 -129.992 -129.9957 -129.997;5
1700 - 129.8054 - 129.98 12 - 129.9925 - 12g.9959 - 129.9974
I BOO - 129.8;5,'56 - 129.982_ - 129.99;5 - 129.9962 - 129.9976
1900 -129.8577 - 129.98,t6 -129.99:34 -129.9964 -129.9977
2000 -129.B746 -12g.ga4_ -129.gg_'7 -129.gg66 -129.997§
21O0 - 129.887g - 129.9I_4 - 12g.994 - 129.9967 - 1299979
2200 -129.§g66 -129.9862 - 129.994,.3 -129.gg6g -129.99a
2300 -129.9075 -129.9868 -129.g946 -129.997 -129.9981
2400 -129.9149 -129.987_ -12g.gg48 -129.g972 -129.gg_2
2500 -129.9'212 -129.988 -129.995 -129.9975 -129.gg83
2500 -129.g267 -129.98_5 -129.gg_2 -129.gg74 -129.g98:5
2700 -129.g314 -129.gsg -129.gg_l -129.gg75 -129.9984
2_:)0 - 12g.g_I6 - 129.9_J'5 - 12g.gged6 - 129.9976 - 12g.9985
2900 -129.g,3g,3 -129.989g -129.ggSa -129,g977 -129.g985
3000 -129.9426 -129.9g02 -12g.gg_g -129.9977 -129.g986
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Slope of the Federal gain function of the state sample size (continued)

rho= O.OS T-bt= 300 S(x)= 40

n $bmderderroroftheestimatedpaymenterrorrate
0.005 0.01 0.0lS 0.02 0025

I00 0 0 -129.8782 -129.9567 -129.9763
200 0 - 129.8356 - 129.9634 - 1299525 - 129.9595
300 0 - 129.93!4 - 1299785 - 129.989 - 1299933
400 0 - 129.9567 - 129.9840 - 129.992 - 129.995
500 0 - 129.9683 - 129.9882 - J29.9937 - 129.996I
600 0 - 129.g7*J1 - 129.9904 - 129.9940 - 129.9968
700 0 -129.9794 -129,9919 -129.9956 -129.9972
§00 - 129.8356 - 129.902_ - 129.993 - 1299962 - 1299975
900 -129.8782 -129.9848 -129,99,t8 -129.99_> -129.9979

1000 - I_ 9032 - 1299865 - 129.994"J - I ,-"9997 - 1299981
11O0 - 129.9197 - 129.9879 - 129.99'5 - !299972 - 1299983
1200 -129.9_14 -129.9a9 - 12g.gc_4 -129.997_ -129.9904
1300 -129.9402 -129.99 -129,99S8 -129.9977 -129.998S
1400 -129.9469 -129.9907 -129,9981 -129.g979 -129.9986
1500 -129.952,'5 -129.9914 -129.9964 -129.998 -129.9987
1600 - i29.9567 - 129.992 - !293966 - 129.gods1 - 129.9988
1700 -129.9603 -129.9925 -129.9968 -129.9982 -129.9989
1800 - 1299634 - 129.99:5 - 129997 - 129.gg_ - 129.9989
1900 - 129.9661 - 129.9934 - 1299972 - 129.998,4 - 129999
2000 - 129.9603 - 129.99:57 - 129.997:3 - 129.990_ - 129999
2100 -129.970,t -129.994 -129.9974 -129.9906 -129.9991
2200 - 129.9721 - 129.g94,1 - 129.g976 - !29.991B6 - 129.999I
2300 -129.9737 - 129.1_16 -129.g977 -129.9987 -129.9992
2400 -129.97!51 -129.9948 -129.g978 -1299988 -129.9992
2500 -129.976,) -129.995 -129.9979 -129.99_9 -129.9992
2500 -129.9774 -129.99_2 -129.997_ -129.9909 -129._3
2700 -129.978_ -129.9954 -129.998 -129.9989 -129.9995
2800 -129.9794 -129.99_6 -129.9981 -129.9989 -129.999,T
2900 -129.9803 -129.gg58 - 129.9962 -129.999 -129.ggg3
3000 - !29.gia11 - 129.99_9 - 129.9982 - 129.999 - 129.9994
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Table F-1. Slope of the Federal gain function of the state sample size (continued)

tho= 0.85 T-bar= 300 S(x)_ I00

n Standarderrorortheestimatedpaymenterrorfete
0.00S 0.01 0.015 0.02 0.025

100 0 0 0 0 0
200 0 0 0 0 - 129.§355
300 0 0 0 - 129.8149 - 129.9314
400 0 0 0 - 129.9076 - 129.9_J67
SOO 0 0 -- 129.7719 - 129.9386 ' 129.9683
600 0 0 - 129.§6_7 - 129954 - 129.97_ 1
700 0 0 - 1299048 - 1299632 - 1299794
000 0 0 - 129.926,t - 129.9693 - 129.9825
900 0 0 - 129.9399 - 129.9737 - 1299848

1000 0 0 - 129.9492 - 129.977 - 129.9§65
1)O0 0 0 -129956 -129.9796 -129.9879
1200 0 - 129.B149 - 129.9613 - 129.9816 - 129.989
1300 0 - 129.8521 - 129.9654 - 129.9833 - 129.99
1400 0 -129.8769 -129.9667 -129.9847 -129.9907
I500 0 -129.8946 -129.9714 -129.9859 -129.9914
1600 0 -129.9078 -129.9737 -129.9869 -129.992
1700 0 - 129.9181 - 129.97'37 - 129.9877 - 129.9925
1600 0 - 129.9263 - 129.9774 - 129.cJ6_ - t29.993
1900 0 - 129.9:3;t - 129.9788 - 129.9892 - 129.991,4
2000 0 - 129.9386 - 129.9801 - 129.9898 - 129.9937
2100 0 -129.94,1,t -129.9813 -129.990,t -129.994
2200 0 - 129.9474 - 129.9823 - 129.9906 - 129.994_
2300 0 -129.9509 -129.9832 -129.9912 -129.9946
2400 0 - 129.9'54 -129.9_1 -129.9916 -129.994a
2500 0 - 129.9567 - 129.9848 - 129.992 - 129.995
2600 0 - 129.9-591 - 129.9rJ4 - 129.992_ - 129.97'J2
2700 0 -129.961:1 -129.9861 -129.9926 -129.9954
2600 0 - 129.96,"I2 - 129.9866 -129.9929 -129.9956
2900 0 - 129.9649 - 129.9872 - 129.9932 - 129.9958
3000 0 - 129.966_) - 129.9876 - 129.9934 - 129.99'59
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Slope of the Federal gain function of the state sample size (continued)

rho= 0.9 T-bar- 300 S(x_- 60

n Standard error of the estimated _yrnent error rets
0.005 0.01 0.01 $ 0.02 0.025

100 0 0 0 -129.7327 -12g.9325
200 0 0 - 129.03§8 - 129.9'J73 - 129 .g7_ 1
300 0 0 -129.9421 -129.9768 -129.9869
400 0 -12g.7327 -129.9647 -129.9841 -129.9907
500 0 - 129.8846 - 129.9746 - 129.9879 - 129.9927
600 0 - 1299264 - ! 2g .g_02 - 12g.g_2 - ! 2g.gg41
700 0 - 129.g4 - 12g.9038 - 12g.9g 18 - 129.99S
800 0 - 129.9=J73 - 129.g062 - 129.g929 - 129.gg57
900 0 - 129.g647 -129.g&81 -129.9938 -129.9962

1000 0 - 1299699 - 129.gOg=J - 129.gg4_ - 129.9966
1100 0 -129.9738 -129.9906 - 129._ -129.9969
1200 0 -1299768 -129.ggi$ -129.gg_ -129,9972
! 300 0 - 129.g792 - i29 9922 - 129.99e08 - 1299974
1400 0 - 12g.gS1 1 - 129.g_28 -129.9961 - 129.gg76
1500 0 - 1299027 - 129,gg_,_ - 129.9964 - 12g.gg78
1600 -129.7327 -129.g841 -129.gg38 -12g.gg67 -129.gg79
1700 -129.7gOg -129.g_52 - 129.994_ -12g.gg69 -129.998
1800 - 12g.83_ - 129.9852 - 129.gg4_ - 129.gg7 - 1299901
1900 - 129.8655 - 129.9871 - 129.gOng - 129.gg72 - 129.9g_2
2000 - 12g._146 - 129.g87g - 12g.gg'51 -129.9974 - 129.9g_,,_
2100 - 129.SgSg - 129.g_16 - 12g.gl_rd4 -129.997'5 -129.9964
2200 - 129.g I 01 - 129,g_r2 - 129.gC_6 - 129.gg76 - 129.gg_
2300 -129.glgl -129,gSg7 -129.9g1_1 -129.g977 -129.9986
2400 -129.9264 -129.gg02 -129.996 -129.9978 -129.9986
2500 - 129.932=J -129.9907 -129.g962 -129.gg79 -129.gg87
2600 - 129.9577 -12g.gg 11 - 129.ggl_ -I 29.gg8 - 129.ggl57
2700 -129.9421 -129,ggl5 -129.9965 -129.g'g61 -129.gg_6
2800 -129.g46 -129.9910 -129.9966 -129.ggll 1 - 129.gg_t
2900 -129.9493 -129.C_)21 -129.9967 -129.9982 -129.9g_)
3000 - 12g.9523 - 12g.gg24 - 129 9968 - 129.99_ - 129998g
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Slope of the Federal gain function of the state sample size (continued)

rho= 0.9 T-bar= 300 S(x)= 40

n Standarderroroftheestimatedpaymenterrorrate
0.005 0.01 0.015 0.02 0025

I00 0 0 -129.8885 -129.9647 -129.9812
200 0 -129.83§8 -129.9705 -129.9862 -129.9918
300 0 -129.9421 -129.983 -129.9915 -129.9948
400 0 - 129.9647 - 129.9881 - 129.9938 - 129.9962
500 0 - 129.9746 - 129.9908 - 129.9951 - 129.997
600 0 - 129.9802 - 129.9925 - 129.996 - 129.99'7'5
700 0 - 129.9838 - 129.9937 - 129.9966 - 129.9979
800 - 129.8388 - 129.9862 - 129.994_ - 129.997 - !29.9981
900 - 129.8885 - 129.9881 - 129.9952 - 129.9974 - 129.9984

1000 - 129.9148 - 129.9895 - 129.9957 - 129.9977 - 129.9985
1100 -129.9311 -129.9906 -129.9961 -129.9979 -129.9987
1200 - 129.9421 - 129.9915 - ! 29.9965 - 129.9981 - 129.9988
1300 - 129.9501 - 129.9922 - 129.9968 - 129.9982 - 129.9989
1400 - 129.9562 - 129.9928 - 129.997 - 129.9o_3 - 129.999
1500 - 129.9609 - 129.99;53 - ! 29.9972 - 129.9985 - 129.999
1600 - 129.9647 - 129.99:38 - 129.9974 - 129.9986 - 129.9991
1700 - 129.9679 - 1299942 - 129.9975 - 129.9986 - 129.9991
1800 - 129.9705 - 129.994_ - 129.997? - 129.9987 - 129.9992
1900 - 129.9727 - 1299949 - 129.99?8 - 129.9988 - 129.9992
2000 - 129.97416 - 129.9_'J 1 - 129.9979 - 129.991_9 - 129.999_
2100 -129.9763 -129.9954 -129.998 -129.9989 -129.9993
2200 -129.9778 -129.9956 -129.9981 -129.999 -129.9993
2300 -129.9791 -129.9958 -129.9982 -129.999 -129.9994
2400 -129.9002 -129.996 - 129.991_ -129.999 -129.999,4
2500 -129.9612 -129.9962 -129.9904 -129.9991 -129.9994
2600 -129.g022 -129.996:3 -129.9984 -129.9991 -129.9994
2700 -129.g03 -129.9965 -129.9985 -129.9992 -129.9995
2800 - 129.98,.38 - 129.9966 - 129.99_ - 129.9992 - ! 29.9995
2900 -129.98,45 -129.9967 -129.9906 -129.9992 -129.9995
3000 - 129.9851 - 129.9968 - 129.9906 - 129.9992 - 129.9995
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Slope of the Federal gain function of the state sample size (continued)

rho= 0,g T-bar-- 300 S(x)= 1O0

n Standarderrororthe estimated Daymenterrorrate
0005 0.01 0,015 0.02 25

100 0 0 0 0 0
200 0 0 0 0 -129.8,_88
300 0 0 0 -129.81 lg -129.94'21
400 0 0 0 -129.g194 -129.g_a7
500 0 0 - 12g.7492 - 12g.947 - 12g.g746
(500 0 0 - 12g.8746 - 129.geD24 - 129.g802
700 0 0 - 12g.g 164 - 129.g705 - 12g.g838
§00 0 0 - 129.93'73 - 129.97_5_ - 129.9a62
gO0 0 0 - 12g.galg8 - 129.gTg I - 12g.g_a 1

1000 0 0 - 129.95a2 - 129.9818 - 12g.gag5
I100 0 0 -129.9642 -129.ga3g -129.9906
1200 0 - 12g.§1 19 - 129.96_7 - 12g.gi_'_ -12g.gg15
1300 0 - 12g.BS89 - 129.g721 - !29.9869 - 129.9922
1400 0 - 129.81571 - 129.9749 - 129.g08 - 129.992e
1500 0 - 129.906 - ! 29.9772 - !29.gOSg - 1299933
1600 0 -129.9194 -12g.g791 -129.9097 - 129.gg3§
1700 0 -12g.g295 -12g.gS07 -12g.gg04 - 12g.gg42
I §00 0 - 12g.g373 - 12g.g821 - 129.gg 1 - 129.gg4_
IgO0 0 -129.9436 -129.g833 -129.9916 -129.994g
2000 0 - 12g.g487 - 12g.g_13 - 129.gg21 - 129.gg'J I
2100 0 -129.gee3 -129.g_2 -129.gg25 -129.gg54
2200 0 - 129 .gSa6 - 12g.g_51 - 129.gg2g - 129 .g_J6
2300 0 -129.gSg7 -12g.g868 -12g.gg32 -I 29.ggS8
2400 0 -129.gG24 - 129.g87=.'.5 - 129._:],.,9 - 129.gg§
2500 0 - 129.g647 - 12g.g_! 1 - 12g.gg38 - 12g.gg62
2600 0 -129.g668 -129.g_ -1:29.gg41 -12g.gg63
2700 0 -129.g687 -129.gSgl -129.9943 -129.gg65
2_0 0 - 129 .g703 - ! 29 .g{!g6 - 129.gg45 - 129 .gg66
2900 0 -129.g718 -129.gg -129.gg47 -129.gg67
3000 0 -129.9731 -129.g904 -129.994g - 129.gCJ_
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Table F-1. Slope of the Federal gain function of the state sample size (continued)

rho= 0.§ T-bmr= 300 S(x)= §0

n Standarderrorofthe estimatedpaymenterrorrate
0005 0.01 0.015 0.02 0.025

I00 0 0 0 -129.7888 -129.9176
200 0 0 -129.§432 -12g.g441 -129.9694
300 0 0 -129.9274 - 129.cJN570 -129.9812
400 0 - 129.7088 - 129.9'5215 - 129.9774 - 129.9864
500 0 - 129.8754 - 129 965 - 129.98'26 - 129.9894
600 0 -129.91 16 -129.9722 - 129.9_._ -129.g913
700 0 - 129.9315 - 129.9769 - 129.988 - !29.9926
800 0 - 12g.9441 - 129.9803 - 129.9897 - 129.gg_5
900 0 - 129.9528 - 129.g_28 - 129.9909 - 129 .c_/4_

I000 0 -129.g_gt -129.g847 -129.991g -129.gg4g
1IOO 0 - 129.g64 - 129.g863 - 129.g927 - 129.g9S4
1200 0 - 12g.cJ671) - 12g.o_76 - 129.g9_3 - 12g.gg.'Sa
1300 0 -129.9709 -129.g886 -129.9o,38 -129.9961
1400 0 -129.97'54 - 129.9_5gt5 - 129.9943 -12g.gg64
1SO0 0 - 129.97eo6 - 129.g902 - 129.9947 - !29.9967
1600 - 129.7_88 - 12g.9774 - 129.990g - 129.9g_ 1 - 12g.gg6g
1700 - 129.82 - 129.9789 -129.9915 -129.9954 -129.9971
1BO0 - 129.B432 - 1299§03 - 129.992 - 129.9g'56 - 129.9972
1900 -129.8611 -129.9815 - 129.gg24 -I 29.9959 -129.9974
2000 - 12g.§7_4 - 12g.ga26 - 12g.gg20 - 129 .gg61 - 12g.g97_
21OO - 129.8869 - 12g.g8_5 - 129.99,12 - 129 .gg6_ - 129.9976
22OO - 129.8966 - 129 .g044 - 12g.gg_ - 12g .gg64 - 12g .ggT'/
2300 -129.g047 -129.gOSl -129.gg30 -129.9966 -129.gg70
2400 -129.91 16 -129.gS_Q -129.g941 -I 29.gg67 - 129.ggTg
2500 -129.9176 -129.9864 -129.9945 -129.9969 -129.998
2600 -129.9228 -129.g87 - 129.gga16 -129.997 -12g.gg61
2700 -129.g274 -129.g676 -129.9948 -129.9971 -129.gg62
2800 -129.C_I$ -129.g08 -129.g_ -12g.gg72 -129.99_
2900 -129.9352 -129.9885 -129.9951 -129.9973 -129.9g_
3000 -129.C)_M -129.g009 -129.9g_ -129.g974 -129.9964
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Slope of the Federal gain function of the state sample size (continued)

rho= 0 .O T_oar* .900 S(x)= 40

n StandarderroroftheestimatedDaymenterrorrate
0.00S 0.01 0.01S 0.02 0025

100 0 0 -129.8785 -129.9§28 -129.9736
200 0 - 129.B432 - 129.9598 - 129.9803 - 129.9881
300 0 - 129.9274 - 129.9759 - 129.9876 - 129.9923
400 0 - 129.9528 - 129.982B - 129.9909 - 129.9943
500 0 - 129.965 - 129.9866 - 129.9928 - 129.9955
600 0 -129.9722 -129.9891 -129,9941 - 129.9963
700 0 - 129.9769 - 129.9_7 - 129.995 - 129.9968
§00 - 129.8432 - 129.C_03 - 129992 - 12999'36 - 1299972
900 -129.8785 -129.9828 -129.9929 -129.9961 -129.9975

1000 - 129.9008 - 129.cJ_47 - 129.9937 - 129.996_ - 129.997B
1100 -129.9162 -129.9863 -129.9943 -129.9968 -129.99e
1200 - 129.9274 - 129.9876 - 129.9948 - 129.9971 - 129.9982
1300 - 129.936 - 129.9886 - !29.9952 - 129.9973 - 129.9983
1400 - 129.9428 - 129.98915 - 129.gcj_ - 129.997'3 - 129.9984
1500 -129.9483 -129.9902 -129.99'59 -129.9977 -129.9985
1600 - 129.cJ_28 - 129.9909 - t29.9961 - 129997B - 1299986
t700 - 129.9S66 -129.9915 -129.9964 -129.998 -129.991B7
1800 - 129.9598 - 129.992 - 129.9966 - 129,9981 - 129.9988
1900 - 129.9626 - 1299924 - 129.9968 - 129.9982 - 129.9909
2000 - 129.96_ - 129.992B - 129.9969 - 129.99E_3 - 129.9989
2100 -129.9871 -129.9932 -129._71 -129.9984 -129._
2200 -129.9_ -129.99,,_ -129.9972 -t29.9984 -129.999
2300 -129.9707 -1299938 -129.9973 -129.998S -1299991
2400 -129.9722 -129._1 -129.9974 -129.99_B -129.9991
2500 - 129.9736 - 129.99,43 - 129.997"J - 129._ - 129._ I
2600 - !29.9748 - 129.9946 - 1299976 - 129.9987 - 129.9992
2700 - 129.97Sg . - 129.9948 - 1299977 - 129.9987 - 129.9992
2800 - 129.9769 - 129.99'5 - 129.9978 - 129.99_8 - 129.9992
2900 - 129.9779 - 129.9_ 1 - 129.9979 - 129.9988 - 129.9992
3000 -129.97aa -129.9953 -129.998 - 129.9C_9 -129.9993
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Slope of the Federal gain function of the state sample size (continued)

rho= 0 § T-bar= 300 S(x]=- IO0

n Standarderrorof_e estimatedpaymenterrorrate
0,005 0.0 J 0.015 0.02 0.025

100 0 0 0 0 0
200 0 0 0 0 - 12g.§'4_2
300 0 0 0 - 129,§272 - 129.9274
400 0 0 0 -129.90:5 -129.g_2§
500 0 0 - 129.795g - 12g9345 o ! 29.965
600 0 0 - 129.8678 - 129.9_ - 129.9722
700 0 0 - 129.9022 - 129.9596 - 129.9769
800 0 0 -129.9224 -129.9661 -129.9803
gOO 0 0 - 1299357 - 129.9708 -129.9828

1000 0 0 - 12g.94 1 - 129.9743 - ! 29.9847
I 100 0 0 -129.9521 -129.9771 -129.9863
I200 0 - 129._272 - 129.957!5 -129.9793 -129.9876
1300 0 -129.8565 -129.9618 -129.9812 -129.9886
t 400 0 - 129.0774 - 129.9654 - 129.cJ_27 - 129.9895
1500 0 - 129 .Og2g - 1299683 - 129.g64 - 129.9902
1600 0 - 129.gO5 - 12g.g70§ - 129.g_52 - 129.ggOg
1700 0 -129.9146 -129.9729 -129.9861 -129.gg15
1800 0 -129.g224 -129.9747 -129.987 -12g.gg2
IgO0 0 - 12g.g28g - 12g.g763 - 12g.9877 - 1299924
2000 0 - 129.g34_ - 129.9777 - 129.g_4 - 129.g928
2100 0 -129.g392 -129.g79 -129.989 -129.g932
2200 0 - 129.9433 - 129.980 1 - 129.gsg6 - 129.g93_5
2300 0 -129.9,468 -129.981 1 -129.99 -129.9938
2400 0 -129.gaJ -129.982 -129.g90_ -129.9941
2500 0 -129.952a -129.9828 -129.ggog - 129.gg4,3
2600 0 -129.g_J3 -129.9836 -129.9913 -129.g946
2700 0 -129.957s -129.9843 -129.gg16 -1299948
2000 0 - 129.g_98 - 129.984g - 129.gg lg - 129.g9_
2900 0 -1299614 -12g.g855 - 129.g9'22 - 129.ggS I
3000 0 -1299631 -129.986 - 129.992_ -129.ggi53
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APPENDIX G

OPTIMUM SAMPLE SIZE FOR DISALLOWANCES

BASED ON LOWER CONFIDENCE BOUNDS

In this appendix, we suppose that a portion of the Federal contribution

is withheld when the lower bound of the nominal (two-sided) 90 percent (or

95 percent) confidence interval for the payment error rate exceeds .03, and that then

the disallowance is the fraction of the Federal contribution equal to the excess of the
lower bound over the tolerance level .03. We use the same notation as in

Appendix F and we also denote

sr = the estimated standard error of r

g -- r-l.645sr.

The disallowance D is then given by

(g - .03)U if g > .03D = 0, otherwise.

For a sample that is sufficiently large, g is approximately normally

distributed, with mean

gg = R-1.6450 r

and variance

2 2 2 2
O_ - Or + (1.645) OSr - 2 x 1.645Pr,SrOrOSr .

From the theorem proved in Appendix F, the expected value of D is given by
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Appendix G

2 2 f.25f_E(D) = c_exp(-gE/2o_)+ (pg-.03) exp(-t2/2)dt.

As in Appendix F, the expected value of the gain to the Federal government is

G = E(D) - cln- c2n'

but the value of E(D) isdifferentthan in the context of Appendix F.

We now ask whether thereare sample sizesn and n' which maximize

the expected value G of the Federal gain. As before,

_}E(D)/_o'_ > 0

and

_K]/4)n = (OE(D)/Oog)(4)og/_n)-c1.

But

_,_/an= (_/2a_)_/_

---(1/2aE:)[43{_.2/an+ 2.706<}Os2r- 3.29 Pr_

x {ar(O_%/_n)+OSr(_r/_n}]

sincePr,sriSinsensitivetovariationinn. Now, since

2

a(_%/_t = (1/2(_s)(aqr/an)

and

aOr/an = (1/2%)(a_/an),

-- we have
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0og/On --- (1/2og) [_2r/_n + 2.706Oosr/0n

- 1645[(od%)( ;27,+

+ (2.706- 1.645_r)/OSr 3o_r/_n].

This expression is difficult to evaluate analytically. It may be positive for some

values of n and negative for others. We are able, however, to calculate E(D) and

therefore E(G) for given values of n and n'. We have calculated the expected

Federal gain for three values of the annual Federal dollar amount of contribution

(20, 50, and 300 million dollars), for four levels of the population payment error rate

R (.04, .05, .06, and .07), and for three levels of the unit standard deviation of the

overpayment error o x (30, 50, and 70). These assumed values cover a reasonable

range of the observed values of the parameters. For Population A, the value of R is

.07297 and the value of oX is about 70. The unit costs assumed are

c1 = $130 = one-half of the cost of the state QC per case in 1982; and

c2 = $,3,30 = unit cost per case of the Federal review in 1982.

The assumed values for the remaining parameters are:

n'/n = .15

Pxy = .9

pr A = .8.

These are reasonable values according to the available data for the year ending

September 30, 1982, and for the three test populations that we constructed.
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A_endix G

For the above values of the parameters and for Federal subsample sizes

up to n'=500, Figures G-1 through G-3 show the expected Federal gain as a

proportion of the Federal contribution. The portions of the curves for extremely

small sample sizes should be disregarded, for the approximations used in the

mathematical development are not acceptable for such small sample sizes.

It will be seen from Table 3-3 in Chapter 3 of this report, and from

Figures G-1 through G-3, that when the Federal contribution is relatively large (for

example, $300 million or more) and the payment error rate is even moderately

higher than the target level of .03 (say .05 or more), the expected proportion of the
Federal contribution that is withheld increases with the size of the Federal

subsample, assuming that the subsampling rate remains constant. The proportion

increases quite rapidly for the smaller sample sizes but at modest rates of increase for

sample sizes greater than about 250. The proportion disallowed increases with

increasing values of ctx. Moreover, at any sample size the proportion disallowed is

very small if the true payment error rate is less than 5 percent.

For smaller Federal contributions, the proportion no longer increases

monotonically with sample size. For high values of the payment error rate, e.g.,

R=.07, there is a sample size for which the proportion is maximum. However, the

curve is quite flat in the neighborhood of the maximum, so that the proportion

varies only a little over a broad range of sample sizes. If the payment error rate is

low, say below 5 percent, the Federal gain may well be negative, and increasingly

negative as sample size increases.

In general, then, from the point of view of maximizing the Federal

gain from disallowances after offsetting the costs of sampling, the optimum strategy

would be to use quite large samples if the Federal contribution is large and the true

payment error rate is relatively high, but to use no sample otherwise. Nevertheless,

in the latter case samples are needed to provide assurance that the error is small, in

addition to supplying the data needed for feedback information to improve
administration.

Table G-1 summarizes, by states, the approximately optimum

-- subsample sizes if the Federal gain from the imposition of disallowances were the
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only consideration in determining sample size. The numbers in the table are

approximations using data for the last six months of fiscal year 1982, with very

rough interpolation of the results summarized in the attached graphs. More
accurate computations could be made for each state, but it is doubtful that it would

be worth the effort. These results indicate that from this point of view, either no

sample would be needed (e.g., ff the state's error rate is less than 4 percent or the

Federal contribution is quite small), or sample sizes substantially larger than those

now used would be desirable. In some cases, no sample at all is called for, because

the Federal contribution is so small that the potential return from disallowances

cannot pay the cost of a sample. In other cases, no sample is called for because the

estimated payment error rate (which was assumed here to be the true rate) was near

or below 3 percent. Of course, the "optimum" sample allocation for a particular

state could vary widely from year to year; the results in Table G-1 are only
illustrative.

We have also estimated the expected gain by simulation using the Test

Population A, with 1000 replicate samples for each of three sample sizes. For that

population, the true error rate is known, namely .07297. These simulations yielded

the results shown in Table G-2. These results are reasonably consistent with the

more general results based on the mathematical argument. We note that in

Table G-2, the proportion of the Federal contribution that is returned increases with

sample size and that the proportion is not highly sensitive to the magnitude of the
Federal contribution.
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A_endix C

Table G-1. Rough approximation to optimum size of the Federal subsample if the only consideration
were the net return from disallowances

Optimum Optimum
State sample size State sample size

Alabama 200 Montana *
Alaska * Nebraska 300
Arizona 170 Nevada *

Arkansas * New Hampshire *
California 500+ New Jersey 500+
Colorado 300 NewMexico 200
Connecticut 400 New York 500+
Delaware 300 North Carolina *
District of Columbia 400 North Dakota *
Florida 350 Ohio 500+

Georgia 350 Oklahoma *
Hawaii 400 _gon 300
Idaho * Pennsylvania 500+
Illinois 500+ Rhode Island *
Indiana * South Carolina 250
Iowa * South Dakota *
Kansas * Tennesaee *

Kentucky * Texas 300
Louisiana 350 Utah *
Maine * Vermont *

Maryland 350 Virginia 300
Massachusetts 500+ Washington 300
Michigan 500+ West Virginia 300
Minnesota * Wisconsin 500+

Mississippi * Wyoming *
Missouri

ii

Note: The asterisk (*) denotes that no sample is called for because ,t_. Federal contribution is low or the
payment error rate is low.
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Table G-2. Expected net gain from disallowances, based on simulations from Population A

Federal Expected Proportion
contribution n' gain returned

$720,000,000 180 $17,457,000 .024
80 12,089,000 .017
50 8,695,000 .012

360,000,000 180 8,621,000 .024
80 5,998,000 .017
50 4,319,000 .012

180,000,000 180 4,202,000 .023
80 2,953,000 .016
50 2,132,000 .012

90,000,000 180 1,994,000 .022
80 1,431,000 .016
50 1,038,000 .012

45,000,000 180 889,100 .020
80 669,600 .015
50 491,300 .011
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Figure G-1. Federal gain as proportion of Federal payment share of $20,000,000
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Figure G-2. Federal gain as proportion of Federal payment share of $50,000,000
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Figure G-3. Federal gain as proportion of Federal payment share of $300,000,000
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APPENDIX H

RULE D FOR COMPUTING DISALLOWANCES

BASED ON ACCUMULATIONS ACROSS YEARS

As discussed in Section 3.6, disallowances are computed and assessed

annually, and are subject to relatively large sampling errors, even with the larger

annual samples in use in the QC program in some states. These large sampling

errors can lead to substantially overstated and understated disallowances. The

problem of large overestimates of disallowances in some years would be avoided by

use of the lower confidence bound instead of the point estimate. However, with

present annual sample sizes, this use would result in large losses to the Federal

government by consistently and substantially understating the disallowances that

would be assessed if the true payment error rates were known.

A related problem with the current rule for the assessment of

disallowances is that disallowances are assessed annually and only when the

estimated error rate is above the target rate. Thus, because of sampling variation, a

state may be assessed a disallowance when in fact the true payment error rate is

equal to or below the target rate. Moreover, since negative disallowances are not

permitted, such disallowances would not be compensated for over time.

Consequently, a state whose true error rate is moderately above the target rate

would, on the average, be assessed a larger disallowance than it would be if the true

overpayment error rate were known. Also, a state whose error rate is at or below

but near the target rate would, on the average, be assessed disallowances.

To eliminate or substantially reduce these problems we describe a

procedure, referred to as Rule D, that accumulates the disallowances across years.

This procedure has the effect (assuming approximately equal sample sizes each year)

of doubling the sample size in two years, tripling it in three, etc., and thus over a few

years greatly reduces the impact of sampling errors. A final settlement of the

accumulated disallowances based on the point estimates is made at a time when the
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sampling errors are acceptably small. In the intervening years, cash settlements are
assessed on the basis of the lower confidence bound of the accumulated

disallowances. The Federal government recovers somewhat less in cash prior to the

final settlement date but avoids greatly overassessing some states each year. The

procedure also substantially eliminates overassessment of states with error rates
near the tolerance.

On a relative basis, the accumulated disallowance based on the lower

confidence bound approaches over time the full disallowances based on the point

estimates. Thus, while there may be a substantial reduction in the first year and a

moderate reduction for a few years in the cash withholding bv the Federal govern-

ment, these cash losses may be deemed acceptable in order to avoid greatly

overassessing some states in individual years. Indeed, such a procedure might

reduce the controversy now taking place with the states over disallowances, and in

fact, might result in substantially greater cash collections than can be obtained by

assessing annual disallowances based on point estimates (the present procedure),

which leads to assessments but not to cash collections except perhaps with long

delay

We have developed 16 examples to illustrate the disallowances

computed by Rule D under the differing circumstances illustrated by the examples,

and to compare them with disallowances as currently computed (Rule A). Each

example is based on specific assumptions for the true error rate and other relevant

parameters. For each example, we have computed and displayed the amounts of

disallowances that would be assessed over a period of 20 years under the present

procedure for computing disallowances, and also for Rule D. The results of these

computations appear in Tables H-1 through H-16.

While the accumulations are carried out for 20 years in the illustrative

examples, the accumulations could be cut off as soon as the eslimated coefficient of

variation of the accumulated disallowance is sufficiently small, say 10 or 15 percent.

A settlement could then be made and the accumulation process could begin again.
The estimated coefficient of variation of the total accumulated disallowance each

year (based on the point estimates) is shown in the last column of the tables. The

-- cut-off time would be extended more or less indefinitely for states with overpay-
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ment error rates near the target (again by cutting off only if the estimated coefficient

of variation of the accumulated disallowance is less than 10 percent or 15 percent).

Various minor modifications of this general approach could also be considered.

Rule D is defined more exactly and the illustrative tables are explained

more fully in what follows.

Let

A i = Federal contribution to cost in year i;

^

Ri = Estimated overpayment error rate in year i;

si = Estimated standard error of hi; and

Roi = Target error rate for year i.

Rule D specifies the cumulative disallowance for year i on the basis of
^

the successive point estimates, R i, of the annual error rates, namely

_)i = _)i-1 + (Ri' Roi) Ai'

The cumulative cash transfer for year i is then based on the lower bound of the
confidence interval for the cumulative disallowance:

_)i-t _ (_b i) if positive,_i = 0, otherwise

where we define

2 2
_'2(_)i) = _2(_)i. 1) + A i si ·

The cumulative book value of the disallowance is the excess of the cumulative

disallowance over the cumulative cash transfer, and is given by
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Note that these formulas also apply to year 1, with the convention that all values

are zero for year 0.

The annual cash transfer for year i is then

Ci = Ci - ti_1

and the annual adjustment to the book disallowance is

Bi = _i' _i-l'

Note that C i may be a negative number. A negative C i could be

returned to the state in cash or perhaps treated as a credit against future dis-

allowances. The choice is, of course, a policy decision.

The computation given above for the cumulative disallowance is

algebraically equivalent to applying the difference between the weighted averages of
^

R i and ROi to the total Federal contribution up to and including the current year.

The weights are the proportions that the annual Federal contributions constitute of

the total Federal contributions. To show this, we write

_)i = l_)i-1 + (_i' Roi) Ai

= _)i-2 + d_i- Roi) Ai-I + (l_i' Roi) Ai

j=l

{:^, ,^, ^,
j=l _,Aj _j' j_l ]_.j _ j--_l '
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Since the samples are independent from year to year, it follows that the

variance of _i may be estimated by

i 2

-- d

The coefficient of variation is therefore estimated by

[var(_1 i)]1/2
cv --

1

- _i [ j_l A J2 4j ] 1/2

Description of Tables

The 16 examples presented in Tables H-1 through H-16 assume various

true overpayment error rates and two levels of sampling error. The assumed

parameters are shown at the bottom of each table. The examples show a 20-year

history of estimated payment error rates. For Examples 1-12, the true payment error

rate is assumed to be constant over the years. For Examples 13-16, the true payment

error rates vary over the years, as displayed in the column headed "True error
rate."

The second and third columns, headed "Error rate" and "sigma,"

represent the observed estimates of the overpayment error rate and its standard

error. They are derived by random selection from the joint distributions of R and

s_ defined by the parameters shown for the example. The simulation of the

estimated error rate assumed a normal distribution of the estimated error rate, with

the specified standard deviation. The latter corresponds approximately to the

Federal sample size shown, and is roughly consistent with values observed in the
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QC program. The standard error of the estimated payment error rate ("sigma") was

simulated by assuming that it was normally distributed with mean equal to the true

standard deviation and variance given by the quantity 02 ([3-1)/4n', and with 13set

equal to 40. This gives variances of s_ that roughly correspond to variances of

estimated standard deviations observed for Test Populations A and B. The

simulation also involves the assumption that the correlation "rho" between the

estimated error rate and its estimated standard error is .7. This also corresponds

roughly to the AFDC experience (as seen in Table C-1 in Appendix C).

The column headed "AFDC" shows the disallowance that would be

assessed by the present AFDC procedure (except that the negative disallowances

shown in this column would be zeros under the present procedure). The two

columns headed "Current Disallowance" show the amounts in the current year,

added to or subtracted from the cumulative amounts for the previous year, as

described above. Thus, the "Cash" column shows the amount that would be

withheld (or perhaps disbursed or credited, if negative) in the specified year, and the

"Book" column shows the change for the current year in the amount of the credit

on the books. Note that the sum of the cash and book amounts is equal to the

figures in the AFDC column, except for rounding errors.

The remaining columns show cumulated values. The error rate

shown is the average estimated error rate, up to and including the current year. 1

The accumulated standard error ("sigma") is computed on the basis of each year

providing an independent sample; i.e., the variance for a given year is computed on

the basis of the fact that the annual samples are independent of one another and

assuming that the square of the estimated standard error in each year is an unbiased

estimate of the variance of the estimated payment error rate. The "Lower bound"

for a given year is computed as the estimated error rate minus 1.645 times the

estimated standard error for the cumulative (average) error rate, and thus is the

lower bound of the nominal 90 percent symmetric confidence interval. Upper

lin practice, the procedure _'bed above for computing the cumulative diaallowmacesby Rule D does
not involve the computation of this cumulative error rate. We noted above that, implicitly, the
effective cumulative error rate is the weighted average of the annual error rates, weighted by the
annual Federal payment. However, since the annual Federal payments are ummaed to be constant in
these illustrations, no weighting is involved.
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confidence bounds are computed in a similar manner, although they play no role in

Rule D. The cash and book accumulated disallowances are computed as described
above. The column "Desired Disallowance" shows the accumulated disallowances

that would be assessed under present procedures if the true error rates were known

and used to assess the accumulated disallowance. Consequently, no credit is given

in years in which the true error rate is less than the target rate.

The tables illustrate how, as the overpayment error rate approaches the

target, the estimated coefficient of variation increases, and no cash settlement is
involved under Rule D.
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Table H-I. Federal withholding, Rule D, Example 1
i

r_, _lo_ e_r_ I [rrer 1' *19_1 t*v*r !°P_r __ Des4re4_mll c_
'cmki _oi_ _rik. I rak I I _u_ I _ I Cmkl ea_l C_l. [rrer

0
I 0.085 0.00634 55 45 I 0 I,OO0 0.01_0 0.0063 0.0746 0.0955 45 l0 50 -5 0 12
2 0.0762 0.00520 46 43 3 2,000 0.0006 0.0041 0.0730 0.0074 88 14 IOO -I 0.00
3 0.0839 0.00_7 54 48 6 3,000 0.0017 0.0040 0.0752 0.0082 135 20 150 -S 0.08
4 0.06811 0.00451 39 37 I 4,000 0.0705 0.1)032 0.0732 0.0037 173 21 200 $ 0.07
5 0.0721 0.1)0337 _ 41 I 5,00O 0.0772 0.0026 0.0729 0.00t5 214 22 25O 14 0.06
& 0.0738 0.00443 44 43 ! 6,000 0.0766 0.0023 0.0726 0.0004 257 23 3OO 20 OOS
7 0.0728 0.(N)450 43 42 I 7,00O 0.0761 O.O02t 0.0726 0.0795 299 24 350 27 0.05
0 0.0833 0.00779 53 5O 3 8,0OO 0.O770 O.O021 0.0736 0.0004 349 27 4O0 24 O.04
9 O.O842O.O0614 54 52 2 9,OO0 0.0770 O.OO2O0.0746 000t0 401 29 45O 28 O.04

tO 0.072 O.OO67 42 40 2 to,oo9 o.o7.7Zo.oot90.074l O.O0O3 441 31 500 21 0.04
II 0.0765 0.00362 46 46 I I1,000 0.0771 00017 0.0743 0.00O0 487 32 550 SI 0:04
12 0O727 0.00457 43 42 I 12,000 0.0760 0.0016 0.0741 O.0795 529 33 600 _11 0.04
i3 00095 0.OO722 59 57 2 I$,OOO0.0777 0.0016 0.0751 0.00O4 506 35 65O 211 0.03
14 0.1)865 0.00670 57 55 2 14,000 0.0784 0.0016 0.0758 0.0010 641 36 700 25 0.03
15 0.041310.00647 53 5Z 2 15,...ooL).0.0707 0.001.50.0762 0.0012 692 38 750 28 0.03
16 0.079a 0.0O5414 5O 49 I 16,000 0.0708 O.OOl50.0763 0.0012 74t 39 8O0 2i 0.03
17 O.00770.O0621 58 56 I tT,000 0.0793 0.0014 0.0769 0.0017 797 48 050 12 O.03
10 0.0765 0.O0571 46 45 I te,o00 0.0791 0.0014 O.O7600.00t4 843 4l 9OO It 0O3
19 O.O7070.OO574 49 40 t 19,OOO0.0791 0.0014 0.0769 0.0813 090 43 95O l! O.03
ZO 0.0,77! 0._ 40, 4.7 I 20,OOQ,,0.0790 0.00!3 0.0769 0.0012 937 44 I000 Ill 0.03

Parameters: Note: *'_ indicates that the coefficient of variation is 10or §reater.
True payment error rate 0.08
Standard deviation 0.006
Beta 40
rho 0.7

Sample size, n' 360
Annual Federal contribution 1,000



Table H-2. Federal withholding, Rule D, Example 2

redo Dlodledm hdord I [rr,r I olgem! L,vor lurer ix_l._ Duir,d iX,d: _v
CwklB,ak c_.rtk.I r_ I I bu,d I _,d I CMkIb akl m=,. [rr,r

0
I 0.1021 0.02026 72 39 33 1,000 0.1021 0.0203 0.0667 0.1354 39 33 50 '22 0.20
2 0.0714 0.0124 41 36 6 2,000 0.0667 0.0119 0.0572 0.1063 74 39 I00 'tS 0.21
3 0.089 0.01207 59 54 5 3,000 0.0875 0.0089 0.0729 0.1021 129 44 150 -22 0.15
4 0.0683 0.00685 38 37 I 4,000 0.0827 0.0069 0.0714 0.0940 165 45 200 '11 0.13
5 0.0778 0.01181 48 44 4 5,OOO O.OOl7 0.0060 0.0719 0.0916 209 49 250 -il 0.12
6 0.0594 0.01481 29 24 6 6,000 0.0780 0.0056 0.0588 0.0871 233 55 300 12 0.12
7 0.0936 0.01483 64 58 5 7,OOO 0.0802 0.0052 0.0716 0.0888 291 60 350 '2 0.10
8 0.0752 0.01392 45 41 4 8,000 0.0796 0.0049 0.0716 0.0876 332 64 400 3 0.10

::X: 9 0.0893 0.01669 59 54 6 9,000 0.0807 0.0047 0.0729 0.0884 386 70 450 4 0.09 ;
I0 0.0765 0.00811 46 45 I I0,000 0.0803 0.0043 0.0731 0.0874 431 71 500 '3 0.09
II 0.0581 0.05709 28 2") I I1,000 0.0782 0.0040 0.0717 0.0848 458 72 550 il 0.08
12 0.0722 0.01004 42 40 2 12,000 0.0777 0.0037 0.0716 0.0839 499 74 600 27 0.08
13 0.0748 0.00673 45 44 I 13,000 0.07?5 0.0035 0.0718 0.0833 5.43 ?5 650 32 0.07
84 0.0818 0.0146 52 48 4 14,000 0.0778 0.0034 0.0722 0.0834 591 79 700 SI 0.07
J5 0.0856 0.0107 ._. 54 _ J_,OOE)0.Q78_0.OO330.0730 .O.O037 644 81 750 25 0.07
16 0.0697 0.01019 40 38 2 16,000 0.0778 0.0031 0.0727 O.0829 682 82 8OO $S 0.07
l? 0.0857 0.01192 56 53 2 17,000 0.0783 0.0030 0.0733 0.0832 736 85 850 SO 0.06
to 0.0771 0.00o65 47 46 I io,ooo 0.0702 0.0029 0.0734 0.0830 782 06 goo 32 0.06
19 0.0644 0.00441 34 34 0 19,oo0 0.0775 0.o028 0.0729 0.0020 016 86 950 41 0.06
ZO 0.0746 0.00092 45 43 I ZO.OOO0.0775 0.0027 0.0730 O.ool7 059 87 tooo _} ,0.06

Parameters: Note: '_* indicates that the coefficient of variation is 10 or greater.

True payment error rate 0.06
Standard deviation 0.012
Beta 40
rho 0.7

Sample size, n' 120
Annual Federal contribution 1,000



Table H-3. Federal withhokling, Rule D, Example 3

ride D4t,illdP_nc, F,derid [ Error [ aqwll [ Lever I ui,#r D4_ Mired e4N, c,,
cik-i B,,k I codrtb.I r,t, I I ,,..d I ,,.,,dI C,,.h Ddmll. Err(Jr

0
I 0.0635 000734 33 21 12 I,OOO 0.0635 00073 0.0514 0.0755 2t t2 3O -S 0.22
Z 0.0634o.oo652 33 29 4 2,000 0.0634 o.o0490.05540.07t5 5t t6 6o -! o.t5
3 0.0697 000668 40 36 3 3,000 00655 0o040 0.O590 0.0720 87 20 9o -t7 O.l t
4 0.0705 0.00713 40 37 3 4,000 0.0666 0.oo35 o.o6t! 0.0725 124 23 t20 .21r 0.09
5 00541 0.00647 24 22 2 5,,,000 0.0642 0.0030 00593 0.0691 147 24 150 -21 000
6 0.o650o.o06se 36 34 2 6,ooo 006,150oo2? 0.06000.06ed leo 27 180 -2'/ 6o8
7 00732 0.oo775 43 40 3 7,000 0.0657 0.OO26 0.0615 0.0700 220 30 2tO .40 0.07
e 0.o588 0.oo549 29 20 t e,ooo o.0649 0.o024 o.o6to o.o687 248 3t 240 ._111 o.07
9 o.o634 0.00725 33 3t 2 9,o0o 0.0647 0.o022 0.0610 0.o684 279 33 270 .42 oo6

lO 0.0600 0.00545 31 30 i 1.0.,000 0.0645 0.0021 0.0609 0.0670 309 34 300 .4_1 0.06
Il 0._ 0.OO5O5 ' 24 23 I II,O00 0.06_ 6.oo200.o60_6:0u,f 332 36 330 ._l' oo6
12 0.0603 0.0O593 30 29 2 12,000 0.0632 0.0019 0.O600 0.0663 360 30 360 -_111 0.06
13 0.O638 0.0O534 34 33 J 13,000 0.0632 0.0010 00602 0.0662 393 39 390 .42 0.05
14 0.0468 0.00532 17 16 I 14,000 0.0620 O.OOl7 0.0592 0.0649 409 40 420 -21 0.05
15 0.O572 0.00513 27 26 I IS,OOO 0.0617 0.0016 0.O590 0.06.44. 435 40 450 . -26 005
t6 0.O612 O.OOTSS 31 3O I 16,000 0.0617 O.OOl6 0.O591 0.0643 465 42 480 -}7 0.O5
17 0.0656 0.00766 36 34 2 ILO00 0.0619 0.0016 0.0593 0.0645 499 44 610 -32 0.05
le 0.0673 o.00565 37 36 t te,ooo 0.0622 0.0015 0.0597 0.0647 535 45 540 .40 0.05
19 0.0506 0.00428 21 20 I 19,000 0.0616 o.ool4 0.0592 0.0640 555 45 570 -U O.OS
20,0,.QSSZ 0.(N)44_ ZS 2S I 20.000 0.0613 0.0014 0.0590 0.0636 580 46 600 -2S 0.04

Parameters: Note: '_ indicates that the coeffiocnt of variation is 10 or greater.

True payment error rate 0.06
Standard deviation 0.006
Beta 40
rho 0.7
Sample size, n' 360
Annual Federal contribution 1,000



Table H-4. Federal withholding, Rule D, Example 4

rate I)ledleq4nw Federd J Errer I dllnm I L,.r ! Upper Dl.ll.__.._g..__.m_Desired I)4mdl cv
'CMik[ !leek aHdrik. I r.# I I bund I keundI c,mhl emkl e,.il. Error

O
I 0.0549 0.00911 25 I0 15 1,000 0.0549 0.0091 0.0399 0.0699 I0 15 30 S 0.37
2 0.0656 0.01142 36 27 9 2,000 0.0602 O.OO?30.0462 0.0722 36 24 60 0 0.24
3 0.0644 0.01016 34 29 5 3,000 0.0616 0.0059 0.0518 0.0714 66 29 9O .-S O.t9
4 0.0606 0.01428 31 23 0 4,000 0.0614 0.0057 0.0520 0.0706 06 36 120 .4 0.10
5 00617 0.01097 32 20 4 5,080 0.0615 O.OOSI0.0531 0.0690 116 42 150 -7 0.16
6 0.0656 0.01257 36 31 s 6,080 0.0621 0.0047 0.0544 0.0699 146 47 180 -IS 0.15
? 0.0617 0.01567 32 25 7 7,000 0.0621 0.0546 0.0545 0.0697 171 53 210 -15 014
e 0.0712 0.01524 41 36 6 8,000 o.o632 0.0045 0.0559 o.o?06 2o7 59 248 -26 0.13
9 00613 0.01274 31 26 4 9,080 0.0530 0.oo42 0.0561 0.0699 235 62 27o -27 013

I0 0.0675 0.01264 37 34 3 I0,000 0.0634 0.0040 0.0569 0.0700 269 66 300 -_ 0.12
ii 0.0718 0.01374 42 50 4 11,008 0.0642 0.oo30 0.0579 0.0705 307 70 330 ..46 0.11
12 0.0639 0.01566 34 29 5 12,000 0.0642 0.0036 0.o560 0.0704 336 74 36o ..50 0.11
13 0.065 0.01047 $5 33 2 13,000 0.0542 0.0036 0.0504 0.0701 369 76 390 .-55 0.10
14 00672 001361 37 34 3 14,080 0.0645 0.OO350.0588 00701 403 eo 420 42 0.10
15 0.0457 0.00550 16 15 i 15,000 0.0632 0.0033 0.0579 0.0606 410 eo 450 .41 0.10
16 0.0743 0.01442 44 41 3 16,000 0.0639 0.oo32 0.0687 0.0691 459 04 480 42 0.09
17 0.0815 0.01207 51 49 2 17,000 0.0649 0.0051 0.0599 0.o7oo 500 86 510 ,44 o.09
10 0.0616 0.01232 32 29 2 18,oo0 0.0647 0.0030 0.0590 0.0696 537 00 540 ..Is 009
19 0.0654 0.01654 35 29 4 19,000 0.0647 o.ooso 0.0590 0.0695 566 92 570 .46 0.09
zo 0.(_i61 0.01535 36 34 ..3. _o,oclo l_).0647O.lj_t_90.o([K)o 0.06.95 600 95 600 ,,lis o.oo_

Parameters: Note: _ indicates that the coefficient of variation is 10 or greater.
True pa_t errorrate O.O6
Standarddeviation 0.012
Beta 40
rho 0.7
Sample size, n' 120
Annual Federal contribution 1,000



Table H-5. Federal withholding, Rule D, Example 5

II

r_e I Dq_uqnm,. FederalI trrer [ a411mI LMr l Up#r _1___ _r_ _amm
I Cedi I !leek centrtk. I rah I I bumI koundI ak I BookI eqxml. [rrer

0
I 0.0385 0.005,43 8 0 8 I,OOO 0.0385 0.0054 0.0295 0.0474 0 8 lO 2 0.64
2 0.0461 O.OO?07 10 12 6 2,000 0.0433 0.0045 0.0359 0.0506 12 15 20 -7 0.34
3 0.039 000623 9 ? 2 3,000 0.0410 0.0034 0.0362 0.0475 18 17 30 -5 0.29
4 0.0315 0.00564 I 0 I 4,000 0.0392 0.0027 0.0347 0.0430 19 18 40 S 0.30
5 0.0388 0.00517 9 ? 2 5,,000 0.0392 0.0024 0.0352 0.0431 26 20 50 4 0.26
6 0.0410 0.iN]1561 12 I0 2 6,,000 0.0396 0.OO22 0.035§ 0.O433 36 22 60 2 023
7 0.0303 0.00404 0 -I I 7,0OOO.O563O.O020O.O35O0.0416 35 23 70 12 0.24
O 0.0401 0.00604 I0 0 2 B,OOO0.0365 0.0019 0.0354 0.0416 43 25 eo 12 o.22
9 0.0369 0.00491 7 6 I 9,000 0.0383 0.0018 0.0354 0.0413 49 26 9O IS 021

to 0.0350.oo537 5 4 m !0,000 0.0,_, 07,00170.0352oo40e 52 20 moo 21 o.2t
Il 0.0352 0.00_77 5 4 2 I I,OOO0.0377 O.OOl60.03510.0404 56 29 t tO 23 0.2t
12 0.052 0.00022 22 19 3 12,000 0.0589 0.0016 0.0362 0.0416 75 32 120 Il 018
13 0.0288 0.OO642 -t -2 I 13,000 0.0362 O.OOl60.03560.0407 72 34 130 24 0.19
14 0.0568 0.0043 7 6 I 14,000 0.0561 O.OOI5 0.0356 0.0405 78 34 140 21 016
15 0.0392 0.00504 9 0 I 15,000 0.0361 0.0014 0.0356 0.0405 66 36 150 ill 0.10
16 0.0477 0.00635 10 16 2 16,000 0.0387 0o0014 0.0564 0.0410 tO2 37 160 2ii 0.16
17 0.0418 0.00637 12 10 I 17,000 003419 0.0014 0.0366 0.0412 113 39 170 19 0.15
lO 0.0442 0.004t,44 14 13 I 10,000 0.0392 0.OO14 0.0370 0.0414 126 40 180 14 0.15
19 0.0399 0.0063 10 9 I 19,000 0.0392 O.OOl3 0.0371 0.O414 134 41 190 14 0.14
20 00463 O.QQ686 16 1.5 Z 20,OOO...0.03.96 O.OOI,5 0.0574 0.0417 149 43 200 Il 0.14

Parameters: Note: ***indicates that the coefficient of variation is 10 or greater.

True payment error rate 0.04
Standard deviation 0.006
Beta 40
tho 0.7

Sample size, n' 360
Annual Federal contribution 1,000



Table H-6. Federal withholding, Rule D, Example 6

c...~.,, i [ Ird. l U.dkM_. F,d,rdI ErrerI ,qm IL, er I Upper I)4_I____.L_.__j I)m4red DINII cY
I c_ l e_ t._rik. I rm I I kuH I ku.d I tnb I bkl _n]l. [rror

o
I 0.7 0.0430 19 18 40 S 0.30

5 3 0.0104 0.0263 0.0604 0 13 I0 -9 0.78
2 0.0405 0.00997 II 0 I0 2,000 0.0419 0.OO720.0301 0.0537 0 24 20 at 0.60
3 0.0207 0.00517 -I 0 -I 3,000 0.0375 0.0051 0.0291 0.0459 0 23 30 ? 0.60
4 0.0730 0.0183 44 Z7 17 4,000 0.0466 0.0060 0.0360 0.0564 27 39 40 -21 0.36
5 0.0306 0.00772 I -I 2 5,000 0.0434 0.0050 0.0551 0.0516 26 41 50 -I1 0.37
6 0.0247 0.00757 -S -7 2 6,000 0.0403 0.0044 0.0331 0.0475 19 43 60 -2 0.42
7 0.0483 0.01305 10 13 5 7,000 0.0414 0.0042 0.015460.0403 32 48 70 -10 0.37
0 0.0503 0.01138 20 17 4 0,000 0.0425 00039 0.0361 0.0490 49 52 00 '21 0.31

._ 9 0.0366 0.00908 7 5 2 9,000 0.0419 0.0036 0.0359 0.0479 53 54 90 '11 0.31
I0 0.0391 0.01332 9 5 4 10,000 0.0416 0.0035 0.0350 0.0474 50 50 I00 'Il 0.30
II 0.0543 0.01586 24 19 6 I1,000 0.0420 0.0035 0.0370 0.0485 77 64 I10 '_i 0.20
12 0.033 0.01354 15 '1 4 12,000 0.0419 0.001540.0363 0.0476 76 67 120 '2S 0.29
13 0.0127 0.O0049 -17 -19 I 115,000 0.0397 0.001520.0344 0.0450 57 69 130 4 033
14 0.0367 0.01018 7 5 2 14,000 0.0395 0.001510.0344 0.0445 62 71 140 ! 0.32
15 0.0581 0.01267 20 25 15 15,000 0.0487 0.001500.015580.0456 87 74 150 -I1 0.28
16 0.02915 0.O0336 -I -I 0 16,O00 0.0400 0.0028 0.0354 0.0446 86 74 160 e 0.28
17 0.0642 0.02001 34 27 7 17,000 0.0414 0.0029 0.0367 0.0462 113 01 170 -24 0.25
10 0.0461 0.01662 16 12, 4 10,OO0 0.0417 0.0029 0.0369 0.0464 125 06 IO0 -_ 025
t9 0.0214 O.OO754 -g -I0 I 19,000 0.04O6 O.OO200.0361 0O452 tls 06 19o -12 o26
2o o.o22_ IJ.EJEJ_} -7 -Il ! 20,000 0.0.387 0.0026 0.0354 0.0441 107 07 200 I 0.27

Parameters: Note: "" indicates that the coefficient of variation is 10or greater.

True payment error role 0.04
Standard deviation 0.012
Beta 40
rho 0.7
Sample size, n' 120
Annual Federal contribution 1,000



Table H-7. Federal withholding, Rule D, Example 7

rite Dtmlleq,'mN Feibrd Error I dym I LMrl ulwr ood.d ed.. c_
Calk i Bmk cilrik, ride I I kou.dI ImudI C.k lB,oki I)lmll. Error

0
I O.OZU 0.0057 -I 0 -I I,OOO 0.0268 00057 0.0194 0.0381 0 -I 3 4 4.65
2 0.0506 0.OO540 I 0 I 2,OOO 0.0297 O.OO4O0.0232 0.0362 0 -I 6 7 tit
3 0.0314 0.00553 I 0 I 3,000 0.0303 0.OO32 0.0250 0.0356 0 I 9 I '*'"
4 0.0269 0.00464 -3 0 -3 4,000 0.0294 0.002770.02r'_ 0.0336 0 -2 12 14 4.62
5 0625 0.OO535 -5 0 -5 5,O0O O.02eS 0.OO24 0O246 0.O325 0 -? 15 22 163
6 0.0357 0.00609 & 0 6 6.000 0.0297 0.oo22o.o26o 0.0334 0 -2 ii "20 77.96
'7 0.0421o.oo684 12 0 12 77,0000.03150.00220.0279o.o35o 0 to 21 11 145
6 0.02977 0.00469 0 0 0 O,OOO 0.0313 0.0020 0.02(10 0.0345 0 I0 24 14 1.56
9 0.0208 0.00559 -I 0 -I 9,000 0.0310 0.0019 00279 0.0341 0 9 27 II 1.877

..10 0.0381 0.00621 0 0 0 IO,O00 0.0317 0.0010 0.02114 0.0346 0 17 30 It 1.05
11 0.0269 0.00646 -3' 0 -3 IloooO 0.0313 0.OOl77 0.0204 0.0341 0 14 33 II 1.36
12 0.03775 0.00649 8 0 0 t2,OOO 0.0310 0.00177 0.0290 0.0340 0 21 36 IS 0.94
13 0.0272 000513 -3 0 -3 13,000 0.0314 O.OOI& 0.0200 0.0341 .0 19 39 21 t.ll
14 0.0375 o.oo?07 8 o o 14,ooo o.o319 0.oot6 0.0293 0.o344 o 26 42 Il 0.84
15 0.0340,0.00370 5 0 5 15,000 O.OS,,zto.oo.t,5,0.,0_ 0.0343 0 31 45 14 0.773
16 0.0173 0.0047 -13 0 -13 16,000 0.0311 0.0014 0.0208 0.0335 0 19 48 N 1.277
17 0.0384o.o0702 e 0 0 177,000 0.0316 0.0014 0.0292 0.0339 0 27 51 24 0.90
10 0.020? 0.0059 -9 0 -9 le,ooo 0.0310 0.00140.020?0.0332 0 17 54 37 t.43
19 0.03120.o0559 I 0 I 19,000 0.03i0 0.00130.02880.0332 0 19 57 11 t.377
zo 0.94_9_q)_,n,_7 t_ ,0 !3 2,.0.0000.031.6Q._t_ o.o,pJ40.0337 0 32 6.o _rl 0.04

Parameters: Note: "* indicates that the coefficient of variation is 10 or greater.

True payment error rate 0.033
Standard deviation 0.006
Beta 40
rho 0.7

Sample size, n' 360
Annual Federal contribuUon 1,000



Table H-8. Federal withholding, Rule D, Example 8

{1 { I c..... ItlYes Irrrerrote dgml AFDC DINI{..__________Feibrd ! Errer i ,49. I LM, I Upper I)t .____1 I)mrnd I_Nn cv
I Caok [ bok I c#trik. I rib I I Immul I kind I Cash I Book [ D4soll Error

0

I 0.0249 O.Oloo7 -5 0 -5 I,O00 0.0249 0.0101 O.OOO30.0415 0 -5 3 I 1.98
2 0.0464 0.01336 16 0 16 2,000 0.0357 O.OO04 0.0219 0.0494 0 II 6 -5 1.47
3 0.0277 0.01395 -2 0 -2 3,000 0.0330 0.0073 0.0211 0.0450 0 9 9 0 2.41
4 0.0237 0.0124 -6 0 -6 4,000 0.0307 0.0063 0.0204 0.0410 0 3 12 Il 9.23
S 0.0241 0.01433 -6 0 -6 S,O00 0.0294 0.0058 0.0199 0.0389 0 -3 15 18 9.16
6 0.030i 0.0067 0 0 0 6,000 0.029S 0.0049 0.0214 0.0376 0 -3 tO 21 9.69
7 0.0245 0.00938 -6 0 -6 7,OOO 0.0280 0.0044 0.0215 0.0361 0 -9 21 SO 3.63
8 0.0238 O.OOOSS -6 0 -6 8,000 0.0282 0.0040 0.0215 0.0348 0 -15 24 31 2.19
9 0.0536 0.01358 24 0 24 9,000 0.0310 0.OO390.0246 0.0374 0 9 27 11 3.95

to 0.03380.08014 4 0 4 10,0000.03130.00360.02530.0373 0 13 30 17 2.67
11 0.03140.01429 I 0 I II,OOO 0.0:_i3 0.00360.0254o.oii';i 0 14 33 lO 278
12 o.o293 0.01296 -I 0 -I 12,000 0.0311 0.0034 0.0255 0.0368 0 13 36 23 300
13 0.029 0.01213 -I 0 -I 13,000 0.0310 0.0033 0.0255 0.0364 .0 12 39 27 3.45
14 0.0663 0.01S72 36 0 36 14,ooo 0.033s 0.0033 0.0281 0.0389 0 49 42 -7 0.94
15 0.0301 0.01491 0 0 0 15,000 0.0353 0.0032 0.0280 0.0385 0 49 45 -4 0.99
16 0.0267 0.00848 -3 0 -3 16,000 0.0328 0.0031 0.0278 0.0379 0 46 48 2 107
17 0.03260.01182 3 0 3 17,OO00.03200.OO300.02OO0.0377 0 48 5t 9 I05
lO 0.056o0.01634 27 0 2? 18,000 0.0342 0.00290.02930.0390 0 75 54 41 o?l
19 0.0371 0.01461 ? 0 ? 19,000 0.0343 0.OO29 0.0296 0.0591 0 02 57 -25 o.6?
20 0.01_6 0.00795 -14 0 -14 20,000 0.0334 0.0028 0.0288 0.0379 0 60 60 4 0.02

Parameters: Note: "* indicates that the coefficient of variation is 10 or greater.
True paymenterrorrate 0.O33
Standarddeviation 0.012
Beta 40
tho 0.7

Sample size, n' 120
Annual Federal contribution 1,000



Table H-9. Federal withholding, Rule D, Example 9
i

t c..._ iir._ O4.db,n,a F...d [rr.r I _tmlt'dr [ ut_r mN_ _lr_ _.
bi lank co_rtb, rite I I tm,dI w I cub lb oki I)_uU Error

0
I 0.0341 0.00672 4 0 4 1,000 0.0341 0.0067 0.0230 0.0451 0 4 0 4 1.65
2 0.025 0.00597 -5 0 -5 2,000 0.0296 0.0045 0.0222 0.0369 0 -I 0 I *"
3 0.0349 0.00662 S 0 5 3,000 0.0313 0.0037 0.0252 0.0375 0 4 0 '4 2.77
4 0.0303 0.00736 0 0 0 4,000 0.0311 0.0033 0.0256 0.0366 0 4 0 .4 3.07
5 0.0275 0.0075 -3 0 -3 5,000 0.0304 0.0031 0.0253 0.0354 0 2 0 -2 0.31
6 0.6_270.00574 3 0 3 6,00o 0.03o8 0.00270.02630.03s2 0 5 0 -s 362
7 0.0229 0.006t1 -7 0 -7 7,000 0.0296 0.0025 0.0255 0.0337 0 -3 0 3 6.90
0 0.04110.00669 tt 0 tt 0,00oo.ostt 0.00230.02720.0349 0 9 0 -t 2.18
9 0.0296o.oo666 0 0 0 9,o0o o.03o9 0.00220.0273o.0345 0 e 0 4 2.44

I0 0.0267 0.005 -3 0 -3 10,000 0.0305 0.00d?.00.0271 0.0339 0 5 0 'S 4.23
I i' 0.0366 o.oos6J -3 0 -3 t t,oo0 0.0301 0.0019 0.0270 0.0333 0 I 0 -I ."e,
12 0.0193 0.00442 -II 0 -It 12,000 0.0292 0.0010 0.0263 0.0322 0 -9 0 I 2.34
13 o.03to 0.00652 2 0 2 13,000 0.0294 0.0017 0.0266 0.0323 .0 -7 0 1 3.05
14 0.0320 000047 3 0 3 14,000 0.o297 0.0017 0.0269 0.0324 0 -5 0 S 5.14
15 0.031 0.00495 I 0 I 15,000 0.0298 0.0016 0.027l 0.0324 0 -4 0 4 6.69
16 0.0541 0.00732 4 0 4 16,000 0.0300 0.0016 0.0274 0.0326 0 I 0 -I o.B.
17 0.027 0.00615 -3 0 -3 17,000 0.0299 0.0015 0.0273 0.0324 0 -2 0 2 .il.,
I0 0.0201 0.00516 -I0 0 -I0 IO,O00 0.0293 0.0015 0.0269 0.0317 0 -12 0 12 2.13
19 0.0397 O.OOMHI I0 0 I0 19,000 0.0299 0.0014 0.0275 0.0322 0 -3 0 S ,Be.,
20 0.0_3!9 0._._ 2 0 2 20.000 0.0__300 0.0014 0.0276 0.0323 0 -I 0 I .,.,'

Parameters: Note: "** indicates that the coefficient of variation is l0 or greater.

True payment error ral_ 0.03
Standard deviaUon 0.006
Beta 40
rho 0.7

Sample size, n' 360
Annual Federal contribution 1,000



Table H-lO. Federal withhokiin& Rule D, Example 10

1 t t Ird, Imdhmo, FdBrd Errer I ,49,,,I LMr ! Upper od_ Dealred Od=Il cv
I Clek I Bmk centrlk, rets I I keuM I kuM I Cash I Book I Odsall. Errer

0
I 0.0297 0.01107 0 0 0 1,000 0.0297 0.0111 0.0115 0.0479 0 0 0 O ici
2 0.0153 0.01066 -15 0 -15 2,000 0.0225 0.0077 0.0096 0.0351 0 -15 0 15 1.02
3 0.0443 0.01591 14 0 14 3,000 0.0296 0.0074 0.0176 0.0419 0 -I 0 I ""'
4 0.0567 0.01551 27 0 27 4,000 0.0365 O.OO68 0.0254 0.0476 0 26 0 -21 1.04
5 0.0279 0.01031 -2 0 -2 5,000 0.034 0.0058 0.0253 0.0443 0 24 0 -24 1.21
6 0.0348 0.0141 5 0 5 6,000 0.03411 0.1)054 0.0259 0.043? 0 29 0 '21 1.13
7 0.009 0.00564 -21 0 -21 7,000 0.0311 0.0047 0.0234 0.0388 0 8 0 4 4.24
8 0.0653 0.01938 35 0 35 8,000 0.0354 0.0048 0.0275 0.0432 0 43 0 43 0.89
9 0.0411 0.01584 I I 0 I I 9,000 0.0360 0.0045 0.0286 0.0434 0 54 0 .,54 0.74

lO 0.0170 0.01002 -12 0 -12 iOaO00 0.0342 0.0042 0.02.74 0.0410 0 42 0 -42 0.99
II 0.0187 0.012 -II 0 -Il II,O00 0.03_ 0.0039 0.0263 0.0393 0 31 0 -SI 1.41
12 0.042 0.01023 12 0 12 12,000 0.0336 0.0037 0.0275 0.0396 0 43 0 43 1.04
13 0.0426 0.01491 13 0 1:3 13,000 0.0:343 0.00:36 0.026:3 0.0402 .0 55 0 -SS 0.05
14 0.0195 0.00788 -10 0 -I0 14,000 0.0332 O.OOebl0.0276 0.0388 '0 45 0 dis 1.06
15 0.02:3:3 0.0079 -7 0 '? !5,000 ,0.0325 0.0032 0.0273 0.0370 0 38 0 -Sl 1.26
16 0.0214 0.00805 -9 0 -9 16,000 0.0:319 0.0031 0.0268 0.0369 0 30 0 41 1.65
17 0.0326 0.01118 :3 0 3 17,000 0.0319 0.0029 0.02700.0367 0 32 0 -S2 1.55
16 0.0:396 0.015:3 I0 0 10 16,000 0.0:323 0.0029 0.02?6 0.0371 0 42 0 '42 1.24
19 0.0128 0.0070:3 -17 0 -17 19,000 0.0:31:3 0.0020 0.0268 0.0358 0 25 0 -2S 212
ZO O.OZO9 0.01:557 -! 0 -! _.000 0.0:312 0.0027 0.0267 0.0356 0 24 0 -_ 2.29

Parameters: Note: N. indicates that the coefficient of variation is 10 or greater.

True payment error nile 0.03
Standard deviation 0.012
Beta 40
rho 0.7

Sample size, n' 120
Annual Federal contribution 1,000



Table H-II. Federal withholding, Rule D, Example 11
i

M[r..rl__I I t c__.. t i IIm*dk,..*m F_.l ['0" I dsm I t,v,; IuwPr 04_ h_4,.,d D4,_, _,
I cml Iht ooMdk rl I I bundI b,M I CmkI_kl Ddmll. frrer

0
I 0022 0.00672 -0 0 -0 1,000 0.0220 0.0067 0.01100.0331 0 -O -5 3 0.84
2 O.O200O.OO642 -9 -2 -7 2,OOO0.02i4 O.OO46O.01300.02gl -2 -15 -tO ! 0.54
3 0.0267 0.00656 -3 0 -3 3,000 0.0232 0.0038 0.01690.0294 -2 -19 -15 S 0.56
4 0.0173 O.0O60 -13 -lO -3 4,OOO0.0217 0.00330.0163 0.0272 -;t -22 -20 13 O.4O
5 0.032? 0.00773 3 6 -3 5,_ 0.0239 0.00310.0189 0.0290 -5 -25 -25 5 0.50
6 0.0188 0.00S04 -il -tO -! 6,000 0.0231 0.002? 0.0166 0.027S -15 -27 -30 12 0.39
7 0.0226 0.00652 -7 -5 -2 7,000 0.0230 0.0025 0.0809 0.027! -20 -29 -35 14 0.36
O 0.0234 0.0068 -7 -4 -2 0,000 0.0231 0.0023 0.0192 0.0269 -25 -31 -4O 16 0.34
9 O0120 0.00394 -17 -16 -I 9,O00 0.0219 0.0021 0.0184 0.0254 -41 -31 -45 28 0.26

I0 0.0256 0.00670 -4 -.2 -2 10,000 0.0223 0.0020 0.0189 0.(_-_56 -44 -33 -50 2; 0.26
II 0.024 0.00504 -6 -4 :l 11,000 0.022S 0.0019 0.01_30.0206 -48 -35 -ss 21 0.26
12 0.0263 0.00576 -4 -2 -1 12,000 0.0220 0.00i0 0.0190 0.0258 -50 -36 -60 21 025
13 0.0372 0.0072S 7 9 -2 13,000 0.0239 0.0018 0.0210 0.0268 -dll -38 -65 14 0.29
14 0.0249 o.oosim -5 -4 -1 14,000 0.0240 0.0017 0.02i2 0.0268 -as -39 -70 14 0.28
15 0.0236 0.00425 -6 -6 -1 15,000 0.0240 0.0016 0.0,2,130.,0266 -51 -4O -75 Il 027
t6 0.020J 0.0o633 -2 -1 -1 16,000 0.0242 0.0016 0.0216 0.0260 -51 -41 -80 1_ 0.27
17 0.0191 0.00486 -II -10 -1 17,000 0.0239 0.0015 0.0215 0.0264 -62 -42 -es 18 025
10 0.0235 0.oo67 -7 -5 -! 10,000 0.0239 0.0015 0.0215 0.0263 -67 -43 -90 20 0.24
19 0.0207 o.oo52 -9 -0 -1 19,000 0.0237 0.0014 0.0214 0.0260 -75 -44 -95 2q 0.22
ZO 0.0215 0.00_76 -O -7 -I 20.000 0.0236 0.0014 0.0214 0.0259 -03 -45 -JO0 FI o.21

Parameters: Note: _ indicates that the coefficient of variation is 10 or §reater.
True pa_t error ]'ale 0.025
Standard deviation 0.006
Beta 40
rho 0.7
Sample size, n' 360
Annual Federal contribution 1,000



Table H-12. Federal withholding, Rule D, Example 12
IIII IIlll I

I ] {rite mNIkr_ Fekr,l I Error I dgml I LeverI Upiil Di_ DEaired I)daell cv
"c..i Iht t.M.k I rm I I [,,aM I [,,aM I tnb, l h oki IMMII. [rror

0
I 0.03 0.01589 0 0 0 1,000 0.0300 0.0159 0.0039 0.0562 0 0 -5 -5 '"
2 0.0321 0.01311 2 0 2 2,000 0.0311 0.0103 0.0142 0.0460 0 2 -10 '12 9.41
3 0.0163 0.00753 -14 0 -14 3,000 0.0262 0.0073 0.0141 0.0362 0 -12 -IS '$ 191
4 00343 0.01238 4 0 4 4,000 0.0202 0.0063 0.0170 0.0366 0 -7 -20 -13 3.50
5 0.0186 0.00956 -II 0 -II 51000 0.0263 0.0054 00174 0.0351 0 -19 -25 4 1.45
6 00145 0.61014 -15 0 -15 6,000 0.0243 0.0048 00164 0.0322 0 -34 -30 4 065
7 0.0423 001276 12 0 12 7,000 0.0269 00045 0.0195 0.0343 0 -22 -35 -13 1.45
6 0.0167 000724 -13 0 -13 6,000 00256 0.0040 0.0190 0.0323 0 -35 -40 '5 0.92
9 0.0282 000842 '2 0 -2 9,000 0.0259 0.0037 0.0196 0.0320 0 -37 -45 4 091

10 0.0406 0.0148.1 .....II 0 11 !0,000 0.0274 0.0037 0.0214 0.0334 0 -26 -50 -24 1.40
II 0.0316 0.01293 2 0 2 I1,000 0.0276 0.0035 0.0220 0.0336 0 -24 -'_S 'SI 1.59
12 0.0222 0.00971 -0 0 -0 12,000 0.0273 0.0033 0.0210 0.0326 0 -32 -60 -iii 1.24
13 0.0165 0.01127 -12 0 -12 13,000 0.0266 0.0032 0.0214 0.0319 .0 -44 -65 -21 0.96
14 0.0326 0.01342 3 0 3 14,000 0.0271 0.0031 0.0219 0.0322 0 -41 -70 -29 1.06
15 0.0207 0.01003 -9 0 -9 15,000 0.0266 0.0030 0.0217 0.0315 0 -50 -75 -25 0.89
16 0.04 0.01304 10 0 10 16o000 0.0275 0.0029 0.0227 0.0323 0 -40 -60 .4_ 1.15
17 0.0496 0.01913 20 0 20 17,000 0.0266 0.0030 0.0239 0.0337 0 -21 -65 44 2.42
te 0.0007 0.0073 -21 0 -21 18,000 0.0277 0.0020 0.0230 0.0323 0 -42 -90 .40 121
19 0.0474 0.01626 17 0 17 19,000 0.0287 0.0026 0.0241 0.0333 0 -25 -95 -lO 2.17
2O 0.Q_6 9.915O7 ! 9 ! 20,000 o.ozoe o.ooze o.o242 0.0334 0 -24 -100 -'/6 2.31

Parameters: Note: _ indicates that the coefficient of variation is 10 or greater.

True payment error rake 0.025
Standard deviation 0.012
Beta 40
rho 0.7

Sample size, n' 120
Annual Federal contribution 1,000



Table H-13. Federal withholding, Rule D, Example 13

role O4NIhPidmm Fderd Error iddlm _ UPINr Di_ I)Wrml TrueCJl i _ midrib, r_ ImM I C_i I ilk I !Xmll.I MI'QrMa Error I

0
I 0.075 0.00654 45 35 lO 1,000 0.0750 00063 00646 0.0855 35 I0 40 0.070 -5 0.1409
2 0.0612 O.O05ZO 31 20 S 2,000 0.0681 0.0041 0.0613 0.0749 63 14 75 0.065 -I 0.t08_
3 0.0639 0.00857 34 20 6 3)OO 0.O667 0.004O0.O6O20.0732 9O 20 t05 0.060 -50. tOOl
4 O.0488O00451 19 l? I 4,O00 0.0622 00032 0.0570 0.067S 108 21 135 0.060 6 0.098?
5 0.0421 0.00.33? IZ II I 5,000 0.0S82 0.0026 0.0559 0.0625 119 22 155 0.050 14 0.0934
6 0.0,_38 0.00443 14" IS I 6,000 0.0558 0.002:3 0.0520 0.0S96 132 23 175 O050 20 0.089?
? 0.0428 0.(N)450 13 12 I 7,000 0.0539 0.0021 0.0505 0.0574 144 24 195 0.050 27 0.0873
8 0.0535 0.00779 23 20 3 8,000 0.0559 0.0021 0.0S05 0.0573 164 27 215 0.050 24 0.0868
9 0.0492 0.00614 19 17 2 9,060 0.0533 0.0020 0.0501 0.0S66 101 29 230 0.045 20 0.0041

IO 0.037 0.0067 7 5 2 10,000 Q.0517 0..0019 0.o406 0.0548 186 31 245 0.045 28 o.o07
II 0.03&5 0.00362 6 6 I j II,O00 0.0505 0.0017 0.047S 0._32 192 32 255 0.040 31 0.0861
12 0.0327 0.00457 3 2 I 12,000 0.0409 0.0016 0.0461 0.0516 194 33 265 0.040 39 0.0874
13 0.0493 0OO?22 19 17 2 13,000 0.0499 0.0016 0.0462 0.0516 211 35 275 0.040 29 0.0857
14 0.0415 0.006?8 12 I0 2 14,060 0.O484 0OO16 o.ods8 0.0510 221 36 28o 0.035 23 0.086
15 0.0381 0.OO647 q ? 2 15,009. 0.047? O.OOJ_)0.O4520.05O2 227 38 285 0.035 20 0.O869
16 O.O290O.O0584 0 -J I 16,000 O.O466O.O01S0.0441 O.O49O 226 39 285 0.030 20 0.0897
I? 0.0377 0.00621 8 6 I ILO00 0.0460 0.0014 0.0437 0.0484 232 40 205 0.030 12 0.0901
18 0.0265 0.00571 -4 -5 I 10,000 0.0450 0.0014 0.0426 0.0473 220 41 285 0.030 16 0.0937
19 0.0237 0.00574 -6 -7 I 19,000 0.0438 0.0014 0.0416 0.0461 220 4:3 280 0.025 17 0.0984
ZO 0.02Z0 O__Od_&L____ -7 -8_ I 20,tPOQ Q.Q4ZIP 0..00.1_ 0.0406 0.0450 212 44 275 0.025 19 0.1037

Parameters: Note: ***indicates that the coefficient of variation is 10 or greater.

Varyi_ paymem errorrate
Standard deviation 0.006
Bela 40
rho 0.7

Sample size, n' 360
Annual Federal contribution 1,000



Table H-14. Federal withholdin 8, Rule D, Example 14

Err"IIrMe MDC C_ Mrtk.FMkrd[ Erg'er_I _ I_ldl I_ Ix_CuIItuIdedwtuN_ll_d_lle4.J MlrorllleTrUe.I IXall.ErrerI _ [

0
I 0.0921 0.02026 62 29 33 I,OOO 0.0921 0.0203 0.0587 0.1254 29 33 40 0.070 -22 0.33
2 0.0564 0.0124 26 21 6 2,O0O 0.0742 O.Ott9 0.0547 0.0936 49 39 75 0.065 -13 0.27
3 0.069 0.0t207 59 34 S S,OOO 0.0725 0.0069 0.0579 0.0871 e4 44 105 0.060 -22 0.21
4 0.04e3 o.oo6es te 17 t 4,0oo 0.0664 0.oo69 0.0551 0.0?77 too 45 135 0.060 -tt 019
5 0.0479 o.ot tel te 14 4 s,ooo 0.o627 0.0060 0.0529 0.0726 t t4 49 155 0.050 -9 ore
6 0.0294o.ot4t -t -6 6 6,0oo 00572 0.00560.04000.o663 toe 55 175 ooso t2 021
? o.o6360.0143 34 20 5 7,oo0 0.0581 0.0o520.o495o.o667 136 6o t95 o.050 -2 0.19
o o.o4520.01392 15 11 4 e,ooo 0.0565o.oo49o.o404o.o645 147 64 215 o.o5o 3 o te
9 o.o543o.o1669 24 19 6 9,ooo o.o562 o.oo47o.o4115o.o64o t66 70 23o 0.045 -6 o.te

to 0.04t5 o.ooelt ti I0 I I0,000 0.054 0.oo43 0.0476 0.o619 176 ?t 245 0.045 -3 0,17
11 0.0t81 0.00709 -12 -13 I II,Ooo 0.0514 0.oo400.OM9 0.0580 163 72 255 0.040 19 0.19
12 0.0322o.o1oo4 2 0 2 12,0000.0496 0.0037 0.0437 0.0560 164 74 265 0.040 27 o.19
13 0.0346 0.00673 5 4 I 13,000 0.0467 0.0036 0.0429 0.0544 t6e 75 275 0.040 32 o.t 9
t4 00368 00146 7 3 4 14,000 0.04?8 0.0034 0.0422 0.0534 ITt 79 2eo 0035 31 0.19
15 0.0406 0.0107 ti 9 .2 15,.01_. 0.0473 o.oo}3 0.0420 0.0527 179 el 2e5 0.035 25 0.t9
16 0.01970.01019 -to -12 2 16,0000.0456 0.oo31o.04050.050e 167 82 285 0.030 35 0.20
17 0.0357o.o1192 6 3 2 17,000o.o45o o.o05oo.0401o.o5oo itt e5 285 0.030 30 o2o
10 0.02710.oo065 -3 -4 I IO,OOO0.0440 0.00290.03930.0460 t67 06 205 0.030 32 0,21
t9 o.oo94o.ooMi -21 -21 0 19,0oo0.0422 0.oo280.03770.046? 146 es 2eo 0.025 46 0.23
20 0.919_ .o.ooeg_ -iQ -1;z .i 20,000 0.0411 o.oQ_7 Q.0367 0.0454 134 07 275 0.025 53 0.24

Parameters: Note: '*" indicates that the coefficient of variation is 10 or greater.

Varying payment error rate
Standard deviation 0.012
Beta 40
rho 0.7

Sample size, n' 120
Annual Federal contribution 1,000



Table H-15. Federal withholding, Rule D, Example 15

i,-1Err'rI--Ir. ,.,.,rr.r C...d.u.I...,I r. i'"'l [ Cash I _k [ Dtmll. efforrlht Error

0
I 0.055 0.00634 25 15 I0 1,000 0.0550 0.0063 0.0446 00655 15 I0 40 0.070 15 0.25
2 0.0412 0.00520 II O 3 2,000 0.0401 0.0041 0.0413 0.0549 23 14 75 0.065 39 0.23
3 0.0409 0.00057 19 13 6 3,000 0.0,484 0.0040 0.0410 0.0549 35 20 105 0.060 50 022
4 0.0200 0.00451 -I -3 I 4,000 0.0435 0.0032 0.0382 0.0467 33 21 135 0060 01 0.24
5 0.0321 0.00337 2 I I 5d.0()0 0.04!2 0.0026 0.0369 0.0455 34 22 155 0.050 99 0.24

6.0288 0.00443 -I -2 I 6,000 0.0391 0.0023 0.0353 0.0425 32 23 175 0.050 120 0.25
7 0.0270 0.00450 -2 -3 I 7,000 0.0375 0.0021 0.0341 0.0410 29 24 195 0.050 142 020
6 0.0383 0.00779 6 5 3 0,000 0.0576 0.0021 0.0342 0.0410 34 27 215 0.050 154 0.27
9 0.0342 0.00614 4 2 2 9,000 0.0372 0.0020 0.0340 0.0405 36 29 230 0.045 165 0.27

10 0.022 0.0067 ,_0 -10 2 10,000 0.0357 0.0019 0.0326 0.0300 26 31 245 0.045 160 0.33 iI I 0.0265 0.00362 ..... -4 ' -:,i . i 1,000 0.0349 0.0017 '§.o3_ o.o3_8 22 32 255 0.040 201 0.36 i
12 0.0177 0.00457 -12 -13 i 12,000 0.0334 0.0016 0.0387 0.0362 9 33 265 0.040 224 0.48
13 0.0343 0.00722 4 2 2 13,000 0.0335 o.o016 o.o300 0.0362 II 35 275 o.o4o 229 o46
14 0.0315 0.00670 2 0 2 14,000 0.0334 0.0016 0.0308 0.0360 ii 36 260 0.035 233 0.47
15 0.02,,91 0.00647 -2 -3 2 .15,.004)' 0.033.0 0.001,5 Q.OT05 0.0355 7 30 205 0.035 240 0.51
16 0.0296 0.0054J4 0 -I I 16,000 0.0326 0.0016 0.0304 0.0353 6 39 2es 0.03o 2,4o o.63
17 0.0377 0.00621 0 6 I 17,000 0.0331 0.0014 0.0307 0.0355 12 ,4o 265 0.030 232 0.47
10 0.0265 0.00571 -4 -5 I 10,000 0.0327 0.0014 0.0304 0.0550 0 41 265 0.030 236 0.51
19 0.0237 0.00574 -6 -? I 19,000 0.0323 0.0014 0.0300 0.0345 0 43 200 0.025 237 0.60

Z,0 0.0220 O,.__a_'___5 -7 0 -_r 20.__nd___ 0.0316 0.0015 O.0LT_I_0.0340 0 36 275 0.025 239 074

Parameters: Note: *'_ indicates that the coefficient of variation is 10 or greater.

Varying payment error rate
Standard deviation 0.006
Beta 40
rix) 0.7
Sample size, n' 360
Annual Federal contribution 1,000



Table H-16. Federal withholding, Rule D, Example 16
Ill

Errerr_ _ M0C _ Federali trrer #em Lever _#r 04_ Desired True i_sell, cv
[ CmkI etakI _nk. I rd. kem_ kind I _k I BmkI e4nll, mnxme [rrer

0
I 0.07210.02026 42 9 33 I,ooo 0.07210.02030.03870.1054 9 33 4o 0.070 -2 0.4e
2 0.0364 0.0124 6 I 6 2,000 0.0542 O.Ott9 0.0347 0.0730 9 39 75 0.065 27 0.49
3 0o54 0.01207 24 t9 5 3,00o o.os41 0.00e90.03950.06e7 29 44 to5 0.o60 33 037
4 0.0263 000665 -2 -3 I 4,000 0.0477 0.0069 0.0364 0.0590 25 45 135 0.060 64 0.39
5 0.0376 0.01101 0 4 4 5.,000 0.0457 0.0060 0O359 0.0556 29 49 t55 O.050 76 o.3e
6 0.0144 0.01481 -16 -2l 6 6,000 00405 0.0056 0.0383 0.0496 e 65 t75 0.050 ti2 0.53
7 0.0486 0.01463 t9 13 5 7,00o 0.04t6 0.0052 0.033l 0.0502 21 60 t95 0.050 tt3 0.45
8 0.0302 0.01392 0 -4 4 o,ooo 0.0402 0.0049 0.0322 0.0483 17 64 2t5 0.050 t33 048
9 0.0393 0.01669 9 4 6 9,000 0.0401 0.0047 0.0323 0.0479 21 70 230 0.045 139 0.47

to 0.0265o.ooett -4 -5 t 10,000 0.038e0.00430.03160.0459 t6 7! 245 0.045 157 0.49
l! 0.008! 0.00?09 -22 -16 -& 11,000 0.0360 0.00,40 0.0294 0.0425 0 66 255 0.04O lC9 067
12 0.0t72 0.01004 -13 0 -13 12,000 0.0344 0.0037 0.0262 0.0406 o 53 265 0.04o 2t2 o.e5
t3 o.otge o.oo673 -I0 0 -to t3,000 0.0333 0.0035 0.02?5 0.0390 .o 43 275 0.040 232 t.07
t4 o.o260 0.0146 -3 0 -3 14,000 0.0326 0.0034 o.o2?2o.o384 'o 39 260 0.035 241 t2t
15 0.0306 0.0107 I 0 I 15.,000 0.0327 0.0033 0.0273 0.0300 0 4o 205 0.035 245 I.z2
16 0.0197 0.01019 -tO 0 -I0 1&,000 0.0319 0.0031 0.0267 0.037O 0 30 286 0.030 255 t.6e
17 0.0357 O.Ott92 6 0 6 17,000 0.0321 0.0030 0.0271 0.0371 0 35 205 0.030 25O t.45
to 0.027l 0.00065 -3 0 -3 to,000 0.0310 0.0029 0.02?0 0.0366 0 33 265 0.030 252 t.60
19 0.0094 000441 -21 0 -21 19,000 0.0306 0.0028 0.0261 0.0352 0 t2 2eo 0.025 268 4.36
20 0.01960.00092 -to [) -I0 20,000 0.030i 0.00.270.02.570.0344 0 2 275 0.025 273,,,,

Parameters: Note: '"_ indicates that the coefficient of variation is i0 or greater.
Varying payment error rate
Standard deviation 0.012
Beta 40
rho 0.7
Sample size, n' 120
Annual Federal contribution 1,000
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APPENDIX I

EFFECT OF SUBSTITUTING '[' FOR T IN ESTIMATING

OVERPAYMENT ERROR RATES

^

The estimator of the overpayment error rate in current use, R, given by

Equation (I) in Chapter 1 of the report and by Appendix B, involves the quantity t,

the average AFDC payment per case as estimated from the state sample. In the

original proposal for the regression estimator, T, the average AFDC payment per

case in the complete caseload of the state in the specified time period was used

instead of _, the estimate of T from the state sample. This raises questions with

regard to the statistical efficiency of the estimator _, based on _, and the validity of

the estimator of its variance. This appendix examines these questions.

The evaluation was done by simulating the sampling and estimating

procedures for Population A. For each of three sample sizes, 1000 samples were

drawn, l In each of the samples, the regression estimator and three difference

estimators (using three values of the coefficient k; see Appendix B) were computed,

using f and also using T. The variation of the estimates over the 1000 samples
2

provided estimates of the variances of the alternative estimators, denoted oi./_ and
2

o ../_. The results are shown in Table I-1. For both the regression and the difference

estimators, the variances of the estimates of R do not differ greatly. For the

regression estimator the relative difference is only 8 to 10 percent, which

corresponds to a relative difference in the standard errors of only about 4 or

5 percent.

IThe sample sizes used for these simulations were different, and generally smaller, than those used in
later simulations. The reason was that these and certain other simulations were done early, with
sample sizes more representative of six month samples, chosen to illustrate what happens with
relatively smaller samples than the annual samples currently in use.

I-1



Appendix I

Moreo,-er, the variances of the estimates that use t are moderately

smaller than of those that use T. This is because the coefficient of variation of t is

small and the estimated average overpayment per case, _", is positively correlated

with the average AFDC payment per case. The relative variance of the ratio of two

random variables u and v is given by

2
Vu/v ' V2u+V2v-2pVuV v.

Here, P denotes the correlation between u and v. If the denominator v

is a constant (which is the case when T is used), then the relvariance of the ratio

reduces to V2 since Vv=0. If the denominator v is not a constant but a variableu

(which is the case when t is used), the relvariance of the ratio depends upon the

value of the quantity V_v- 20VuV v. The use of a variable v will produce a smaller

variance than the use of a constant v if p > Vv/V u. Since in our case the coefficient

of variation of t is far less than the coefficient of variation of _", it does not require a

very large value of the correlation p to give the use of _ a small advantage.

Consequently, we have the fortunate result that the more convenient estimator has

a somewhat smaller variance and is not only appropriate but recommended.
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Table I-1. Comparison of variances of x"/t and x"/T for Population A (Variances are shown times 104)

Sample size r2_"/T r2_"/t Ratio
(n/n') Estimator (1) (2) (1)/(2)

1200/180 Regression 1.397 1.297 1.08
Difference, k=l 1.383 1.307 1.06
Difference,k=.9 1.393 1.309 1.06

Difference,k=.8 1.445 1.351 1.07

500/80 Regression 3.136 2.897 1.08
Difference, k=l 3.004 2.938 1.02
Difference, k=.9 3.004 2.940 1.02
Difference,k=.8 3.117 3.030 1.03

300/50 Regression 5.176 4.696 1.10
Difference, k=l 4.923 4.786 1.03
Difference,k--.9 4.981 4.791 1.04
Difference, k--.8 5.209 4.937 1.06
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